Koliki je zbir aritmetičke progresije? Aritmetička progresija – niz brojeva



Da, da: aritmetička progresija nije igračka za tebe :)

Pa, prijatelji, ako čitate ovaj tekst, onda mi interni cap-dokaz govori da još ne znate šta je aritmetička progresija, ali stvarno (ne, onako: JAOO!) želite da znate. Stoga vas neću mučiti dugim uvodima i prijeći ću odmah na stvar.

Prvo, par primjera. Pogledajmo nekoliko skupova brojeva:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Šta je zajedničko svim ovim setovima? Na prvi pogled ništa. Ali zapravo postoji nešto. naime: svaki sljedeći element se razlikuje od prethodnog za isti broj.

Procijenite sami. Prvi set su jednostavno uzastopni brojevi, svaki sljedeći je jedan više od prethodnog. U drugom slučaju, razlika između serije stalni brojevi je već jednako pet, ali je ta razlika još uvijek konstantna. U trećem slučaju, korijeni su u potpunosti. Međutim, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i u ovom slučaju, svaki sljedeći element jednostavno se povećava za $\sqrt(2)$ (i ne bojte se da je ovaj broj iracionalan).

Dakle: svi takvi nizovi se nazivaju aritmetičke progresije. Hajde da damo striktnu definiciju:

Definicija. Niz brojeva u kojem se svaki sljedeći razlikuje od prethodnog za potpuno isti iznos naziva se aritmetička progresija. Sam iznos za koji se brojevi razlikuju naziva se razlika progresije i najčešće se označava slovom $d$.

Napomena: $\left(((a)_(n)) \right)$ je sama progresija, $d$ je njena razlika.

I samo nekoliko važnih napomena. Prvo, uzima se u obzir samo napredovanje naredio redosled brojeva: dozvoljeno je da se čitaju striktno onim redom kojim su napisani - i ništa drugo. Brojevi se ne mogu preurediti ili zamijeniti.

Drugo, sam niz može biti ili konačan ili beskonačan. Na primjer, skup (1; 2; 3) je očigledno konačna aritmetička progresija. Ali ako nešto napišete u duhu (1; 2; 3; 4; ...) - to je već beskonačna progresija. Čini se da trotočka iza četiri nagoveštava da predstoji još dosta brojeva. Beskonačno mnogo, na primjer. :)

Također bih želio napomenuti da se progresije mogu povećavati ili smanjivati. Već smo vidjeli sve veće - isti skup (1; 2; 3; 4; ...). Evo primjera opadajuće progresije:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

U redu, u redu: posljednji primjer može izgledati previše komplikovano. Ali ostalo, mislim, razumete. Stoga uvodimo nove definicije:

Definicija. Aritmetička progresija se naziva:

  1. povećava se ako je svaki sljedeći element veći od prethodnog;
  2. smanjuje se ako je, naprotiv, svaki sljedeći element manji od prethodnog.

Osim toga, postoje takozvani "stacionarni" nizovi - oni se sastoje od istog broja koji se ponavlja. Na primjer, (3; 3; 3; ...).

Ostaje samo jedno pitanje: kako razlikovati rastuću progresiju od opadajuće? Srećom, ovdje sve zavisi samo od predznaka broja $d$, tj. razlike u napredovanju:

  1. Ako je $d \gt 0$, tada se progresija povećava;
  2. Ako je $d \lt 0$, onda se progresija očito smanjuje;
  3. Konačno, postoji slučaj $d=0$ - u ovom slučaju se cjelokupna progresija svodi na stacionarni niz identičnih brojeva: (1; 1; 1; 1; ...), itd.

Pokušajmo izračunati razliku $d$ za tri opadajuće progresije navedene gore. Da biste to učinili, dovoljno je uzeti bilo koja dva susjedna elementa (na primjer, prvi i drugi) i oduzeti broj s lijeve strane od broja s desne strane. To će izgledati ovako:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Kao što vidimo, u sva tri slučaja razlika je zapravo negativna. A sada kada smo manje-više shvatili definicije, vrijeme je da shvatimo kako su progresije opisane i koja svojstva imaju.

Termini progresije i formula recidiva

Budući da se elementi naših sekvenci ne mogu zamijeniti, mogu se numerisati:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \desno\)\]

Pojedinačni elementi ovog skupa nazivaju se članovima progresije. Označeni su brojem: prvi član, drugi član itd.

Osim toga, kao što već znamo, susjedni termini progresije povezani su formulom:

\[((a)_(n))-((a)_(n-1))=d\Strelica desno ((a)_(n))=((a)_(n-1))+d \]

Ukratko, da biste pronašli $n$-ti član progresije, morate znati $n-1$-ti član i razliku $d$. Ova formula se naziva rekurentna, jer uz njenu pomoć možete pronaći bilo koji broj samo ako poznajete prethodni (i zapravo sve prethodne). Ovo je vrlo nezgodno, pa postoji lukavija formula koja sve izračune svodi na prvi član i razliku:

\[((a)_(n))=((a)_(1))+\left(n-1 \desno)d\]

Vjerovatno ste već naišli na ovu formulu. Vole da ga daju u svim vrstama priručnika i knjiga o rešenjima. I u svakom razumnom udžbeniku matematike jedan je od prvih.

Ipak, predlažem da malo vježbate.

Zadatak br. 1. Zapišite prva tri člana aritmetičke progresije $\left(((a)_(n)) \right)$ ako je $((a)_(1))=8,d=-5$.

Rješenje. Dakle, znamo prvi pojam $((a)_(1))=8$ i razliku progresije $d=-5$. Koristimo upravo datu formulu i zamijenimo $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \desno)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \desno)d=((a)_(1))+2d=8-10= -2. \\ \end(poravnati)\]

Odgovor: (8; 3; −2)

To je sve! Imajte na umu: naš napredak se smanjuje.

Naravno, $n=1$ se ne može zamijeniti - prvi član nam je već poznat. Međutim, zamjenom jedinstva, uvjerili smo se da i za prvi mandat naša formula funkcionira. U drugim slučajevima sve se svelo na banalnu aritmetiku.

Zadatak br. 2. Zapišite prva tri člana aritmetičke progresije ako je njen sedmi član jednak −40, a sedamnaesti član jednak −50.

Rješenje. Zapišimo uslov problema poznatim terminima:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(poravnati) \desno.\]

\[\left\( \begin(poravnati) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(poravnati) \desno.\]

Stavio sam sistemski znak jer ovi zahtjevi moraju biti ispunjeni istovremeno. Zapazimo da ako oduzmemo prvu od druge jednačine (imamo pravo na to, pošto imamo sistem), dobićemo ovo:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(poravnati)\]

Tako je lako pronaći razliku u progresiji! Sve što preostaje je zamijeniti pronađeni broj u bilo koju od jednačina sistema. Na primjer, u prvom:

\[\begin(matrica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrica)\]

Sada, znajući prvi član i razliku, ostaje da pronađemo drugi i treći član:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(poravnati)\]

Spremni! Problem je riješen.

Odgovor: (−34; −35; −36)

Obratite pažnju na zanimljivo svojstvo progresije koje smo otkrili: ako uzmemo $n$th i $m$th članove i oduzmemo ih jedan od drugog, dobićemo razliku progresije pomnoženu sa $n-m$ brojem:

\[((a)_(n))-((a)_(m))=d\cdot \lijevo(n-m \desno)\]

Jednostavno ali veoma korisno svojstvo, koji svakako trebate znati - uz njegovu pomoć možete značajno ubrzati rješavanje mnogih problema progresije. Evo jasnog primjera ovoga:

Zadatak br. 3. Peti član aritmetičke progresije je 8,4, a deseti član 14,4. Pronađite petnaesti član ove progresije.

Rješenje. Budući da je $((a)_(5))=8.4$, $((a)_(10))=14.4$, i moramo pronaći $((a)_(15))$, primjećujemo sljedeće:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(poravnati)\]

Ali po uslovu $((a)_(10))-((a)_(5))=14.4-8.4=6$, dakle $5d=6$, od čega imamo:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(poravnati)\]

Odgovor: 20.4

To je sve! Nije nam bilo potrebno da pravimo sistem jednačina i izračunavamo prvi član i razliku - sve je rešeno u samo par redova.

Pogledajmo sada drugu vrstu problema – traženje negativnih i pozitivnih pojmova progresije. Nije tajna da ako se progresija povećava, a njen prvi pojam je negativan, tada će se prije ili kasnije u njoj pojaviti pozitivni termini. I obrnuto: uslovi opadajuće progresije će prije ili kasnije postati negativni.

U isto vrijeme, nije uvijek moguće pronaći ovaj trenutak "naprijed" uzastopnim prolaskom kroz elemente. Često su problemi napisani na način da bez poznavanja formula za proračun bi trebalo nekoliko listova papira – jednostavno bismo zaspali dok bismo pronašli odgovor. Stoga, pokušajmo riješiti ove probleme na brži način.

Zadatak br. 4. Koliko negativnih članova ima u aritmetičkoj progresiji −38,5; −35,8; ...?

Rješenje. Dakle, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, odakle odmah nalazimo razliku:

Imajte na umu da je razlika pozitivna, pa se progresija povećava. Prvi član je negativan, tako da ćemo zaista u nekom trenutku naići na pozitivne brojeve. Pitanje je samo kada će se to dogoditi.

Pokušajmo saznati: do kada (tj. do čega prirodni broj$n$) negativnost pojmova je sačuvana:

\[\begin(align) & ((a)_(n)) \lt 0\Strelica desno ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\lijevo(n-1 \desno)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \desno. \\ & -385+27\cdot \lijevo(n-1 \desno) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strelica desno ((n)_(\max ))=15. \\ \end(poravnati)\]

Poslednji red zahteva neko objašnjenje. Dakle, znamo da je $n \lt 15\frac(7)(27)$. S druge strane, zadovoljavaju nas samo cjelobrojne vrijednosti broja (štaviše: $n\in \mathbb(N)$), pa je najveći dozvoljeni broj upravo $n=15$, a ni u kojem slučaju 16 .

Zadatak br. 5. U aritmetičkoj progresiji $(()_(5))=-150,(()_(6))=-147$. Pronađite broj prvog pozitivnog člana ove progresije.

Ovo bi bio potpuno isti problem kao i prethodni, ali ne znamo $((a)_(1))$. Ali susjedni pojmovi su poznati: $((a)_(5))$ i $((a)_(6))$, tako da možemo lako pronaći razliku progresije:

Uz to, pokušajmo izraziti peti član kroz prvi i razliku koristeći standardnu ​​formulu:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(poravnati)\]

Sada nastavljamo po analogiji s prethodnim zadatkom. Hajde da saznamo u kojoj točki u našem nizu će se pojaviti pozitivni brojevi:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strelica desno ((n)_(\min ))=56. \\ \end(poravnati)\]

Minimalno cjelobrojno rješenje ove nejednakosti je broj 56.

Napominjemo: u posljednjem zadatku sve se svelo na strogu nejednakost, tako da nam opcija $n=55$ neće odgovarati.

Sada kada smo naučili kako riješiti jednostavne probleme, prijeđimo na složenije. Ali prvo, proučimo još jedno vrlo korisno svojstvo aritmetičkih progresija, koje će nam uštedjeti mnogo vremena i nejednakih ćelija u budućnosti. :)

Aritmetička sredina i jednaka uvlačenja

Razmotrimo nekoliko uzastopnih članova rastuće aritmetičke progresije $\left(((a)_(n)) \right)$. Pokušajmo ih označiti na brojevnoj pravoj:

Uvjeti aritmetičke progresije na brojevnoj pravoj

Posebno sam označio proizvoljne termine $((a)_(n-3)),...,((a)_(n+3))$, a ne neke $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$, itd. Jer pravilo o kojem ću vam sada reći radi isto za sve "segmente".

A pravilo je vrlo jednostavno. Prisjetimo se ponavljajuće formule i zapišemo je za sve označene pojmove:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(poravnati)\]

Međutim, ove jednakosti se mogu drugačije napisati:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(poravnati)\]

Pa, pa šta? A činjenica da pojmovi $((a)_(n-1))$ i $((a)_(n+1))$ leže na istoj udaljenosti od $((a)_(n)) $ . I ova udaljenost je jednaka $d$. Isto se može reći i za pojmove $((a)_(n-2))$ i $((a)_(n+2))$ - oni su također uklonjeni iz $((a)_(n) )$ na istoj udaljenosti jednakoj $2d$. Možemo nastaviti do beskonačnosti, ali značenje je dobro ilustrovano slikom


Uslovi progresije leže na istoj udaljenosti od centra

Šta ovo znači za nas? To znači da se $((a)_(n))$ može pronaći ako su susjedni brojevi poznati:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Izveli smo odličnu izjavu: svaki član aritmetičke progresije jednak je aritmetičkoj sredini njegovih susjednih članova! Štaviše: možemo se odmaknuti od našeg $((a)_(n))$ lijevo i desno ne za jedan korak, već za $k$ koraka - i formula će i dalje biti ispravna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

One. lako možemo pronaći neke $((a)_(150))$ ako znamo $((a)_(100))$ i $((a)_(200))$, jer $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na prvi pogled može izgledati da nam ta činjenica ne daje ništa korisno. Međutim, u praksi, mnogi problemi su posebno skrojeni za korištenje aritmetičke sredine. Pogledaj:

Zadatak br. 6. Pronađite sve vrijednosti $x$ za koje su brojevi $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ uzastopni termini aritmetičku progresiju (po navedenom redoslijedu).

Rješenje. Zbog specificirani brojevi su članovi progresije, za njih je zadovoljen uslov aritmetičke sredine: centralni element $x+1$ može se izraziti u terminima susednih elemenata:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(poravnati)\]

Ispalo je klasično kvadratna jednačina. Njegovi korijeni: $x=2$ i $x=-3$ su odgovori.

Odgovor: −3; 2.

Zadatak br. 7. Pronađite vrijednosti $$ za koje brojevi $-1;4-3;(()^(2))+1$ formiraju aritmetičku progresiju (tim redoslijedom).

Rješenje. Hajde da se izrazimo ponovo prosečan član kroz aritmetičku sredinu susjednih pojmova:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \desno.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(poravnati)\]

Opet kvadratna jednadžba. I opet postoje dva korijena: $x=6$ i $x=1$.

Odgovor: 1; 6.

Ako u procesu rješavanja zadatka dođete do nekih brutalnih brojeva, ili niste sasvim sigurni u tačnost pronađenih odgovora, onda postoji divna tehnika koja vam omogućava da provjerite: jesmo li ispravno riješili problem?

Recimo da smo u zadatku br. 6 dobili odgovore −3 i 2. Kako možemo provjeriti da li su ti odgovori tačni? Hajde da ih samo uključimo u originalno stanje i vidimo šta će se desiti. Da vas podsjetim da imamo tri broja ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), koji moraju formirati aritmetičku progresiju. Zamijenimo $x=-3$:

\[\begin(align) & x=-3\Strelica desno \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(poravnati)\]

Dobili smo brojeve −54; −2; 50 koje se razlikuju za 52 je nesumnjivo aritmetička progresija. Ista stvar se dešava za $x=2$:

\[\begin(align) & x=2\Strelica desno \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(poravnati)\]

Opet progresija, ali sa razlikom od 27. Dakle, problem je ispravno riješen. Oni koji žele mogu sami provjeriti drugi problem, ali odmah ću reći: i tu je sve ispravno.

Uglavnom, rješavajući posljednje probleme, naišli smo na još jedan zanimljiva činjenica, što takođe treba zapamtiti:

Ako su tri broja takva da je drugi aritmetička sredina prvog i posljednjeg, onda ti brojevi čine aritmetičku progresiju.

U budućnosti, razumevanje ove izjave omogućiće nam da doslovno „konstruišemo“ neophodne progresije na osnovu uslova problema. Ali prije nego što se upustimo u ovakvu „konstrukciju“, treba obratiti pažnju na još jednu činjenicu, koja direktno proizlazi iz onoga o čemu je već bilo riječi.

Grupisanje i zbrajanje elemenata

Vratimo se ponovo na brojevnu osu. Napomenimo tu nekoliko članova progresije, između kojih, možda. vrijedi mnogo drugih članova:

Na brojevnoj pravoj je označeno 6 elemenata

Pokušajmo izraziti “lijevi rep” kroz $((a)_(n))$ i $d$, a “desni rep” kroz $((a)_(k))$ i $d$. Vrlo je jednostavno:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(poravnati)\]

Sada imajte na umu da su sljedeći iznosi jednaki:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+(a)_(k))-2d= S. \end(poravnati)\]

Jednostavno, ako za početak uzmemo u obzir dva elementa progresije, koji su ukupno jednaki nekom broju $S$, a zatim počnu koračati od ovih elemenata u suprotnim smjerovima (jedan prema drugom ili obrnuto da bi se udaljili), onda sume elemenata na koje ćemo naići će takođe biti jednaki$S$. Ovo se najjasnije može prikazati grafički:


Jednaka udubljenja daju jednake količine

Razumijevanje ovu činjenicu omogućit će nam rješavanje problema u fundamentalno više visoki nivo teškoće od onih koje smo razmatrali gore. Na primjer, ove:

Zadatak br. 8. Odredite razliku aritmetičke progresije u kojoj je prvi član 66, a proizvod drugog i dvanaestog člana najmanji mogući.

Rješenje. Hajde da zapišemo sve što znamo:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(poravnati)\]

Dakle, ne znamo razliku u progresiji $d$. Zapravo, cjelokupno rješenje će biti izgrađeno oko razlike, budući da se proizvod $((a)_(2))\cdot ((a)_(12))$ može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \desno)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \desno)\cdot \left(d+6 \desno). \end(poravnati)\]

Za one u rezervoaru: uzeo sam ukupan množitelj od 11 iz druge zagrade. Dakle, željeni proizvod je kvadratna funkcija u odnosu na varijablu $d$. Stoga, razmotrite funkciju $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - njen graf će biti parabola sa granama nagore, jer ako proširimo zagrade, dobijamo:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Kao što vidite, koeficijent najvećeg člana je 11 - ovo je pozitivan broj, tako da imamo posla sa parabolom sa granama nagore:


raspored kvadratna funkcija- parabola

Imajte na umu: ova parabola uzima svoju minimalnu vrijednost na svom vrhu sa apscisom $((d)_(0))$. Naravno, ovu apscisu možemo izračunati po standardna šema(postoji formula $((d)_(0))=(-b)/(2a)\;$), ali bi bilo mnogo razumnije primijetiti da željeni vrh leži na osi simetrije parabola, pa je tačka $((d) _(0))$ jednako udaljena od korijena jednadžbe $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \desno)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(poravnati)\]

Zato se nisam posebno žurio s otvaranjem zagrada: u njihovom izvornom obliku, korijenje je bilo vrlo, vrlo lako pronaći. Dakle, apscisa je jednaka sredini aritmetički brojevi−66 i −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Šta nam daje otkriveni broj? Kod njega traženi proizvod poprima najmanju vrijednost (usput rečeno, nikada nismo izračunali $((y)_(\min ))$ - to se od nas ne traži). Istovremeno, ovaj broj je razlika prvobitne progresije, tj. našli smo odgovor. :)

Odgovor: −36

Zadatak br. 9. Između brojeva $-\frac(1)(2)$ i $-\frac(1)(6)$ ubacite tri broja tako da zajedno sa ovim brojevima čine aritmetičku progresiju.

Rješenje. U suštini, moramo napraviti niz od pet brojeva, s prvim i posljednjim brojem već poznatim. Označimo brojeve koji nedostaju varijablama $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Imajte na umu da je broj $y$ “sredina” našeg niza - jednako je udaljen od brojeva $x$ i $z$, te od brojeva $-\frac(1)(2)$ i $-\frac (1)( 6)$. A ako smo od brojeva $x$ i $z$ u ovog trenutka ne možemo dobiti $y$, onda je situacija drugačija sa krajevima progresije. Prisjetimo se aritmetičke sredine:

Sada, znajući $y$, naći ćemo preostale brojeve. Imajte na umu da $x$ leži između brojeva $-\frac(1)(2)$ i $y=-\frac(1)(3)$ koje smo upravo pronašli. Zbog toga

Koristeći slično razmišljanje, nalazimo preostali broj:

Spremni! Pronašli smo sva tri broja. Upišimo ih u odgovor onim redom kojim ih treba umetnuti između originalnih brojeva.

Odgovor: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadatak br. 10. Između brojeva 2 i 42 ubacite nekoliko brojeva koji zajedno sa ovim brojevima čine aritmetičku progresiju, ako znate da je zbir prvog, drugog i posljednjeg umetnutih brojeva 56.

Rješenje. Još složeniji problem, koji se, međutim, rješava po istoj shemi kao i prethodni - kroz aritmetičku sredinu. Problem je što ne znamo tačno koliko brojeva treba uneti. Stoga, pretpostavimo za definitivno da će nakon ubacivanja svega biti tačno $n$ brojeva, i prvi od njih je 2, a posljednji je 42. U ovom slučaju, tražena aritmetička progresija može se predstaviti u obliku:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \desno\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Međutim, imajte na umu da su brojevi $((a)_(2))$ i $((a)_(n-1))$ dobijeni iz brojeva 2 i 42 na rubovima za jedan korak jedan prema drugom, tj. do centra niza. A to znači to

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ali tada se gore napisani izraz može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(poravnati)\]

Znajući $((a)_(3))$ i $((a)_(1))$, lako možemo pronaći razliku u progresiji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strelica desno d=5. \\ \end(poravnati)\]

Sve što ostaje je pronaći preostale pojmove:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(poravnati)\]

Tako ćemo već na 9. koraku doći do lijevog kraja niza - broja 42. Ukupno je trebalo ubaciti samo 7 brojeva: 7; 12; 17; 22; 27; 32; 37.

Odgovor: 7; 12; 17; 22; 27; 32; 37

Riječni problemi s progresijama

U zaključku, želio bih razmotriti nekoliko relativno jednostavni zadaci. Pa, onako jednostavno: većini učenika koji uče matematiku u školi, a nisu pročitali ono što je gore napisano, ovi problemi mogu izgledati teški. Ipak, ovo su tipovi zadataka koji se pojavljuju na OGE-u i Jedinstvenom državnom ispitu iz matematike, pa preporučujem da se s njima upoznate.

Zadatak br. 11. Tim je u januaru proizveo 62 dijela, au svakom sljedećem mjesecu proizveo je 14 dijelova više nego u prethodnom mjesecu. Koliko je delova tim proizveo u novembru?

Rješenje. Očigledno je da će broj dijelova navedenih po mjesecima predstavljati rastuću aritmetičku progresiju. Štaviše:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \desno)\cdot 14. \\ \end(align)\]

Novembar je 11. mjesec u godini, tako da moramo pronaći $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Stoga će u novembru biti proizvedeno 202 dijela.

Zadatak br. 12. Knjigovezačka radionica je u januaru uvezala 216 knjiga, au svakom narednom mjesecu uvezala je po 4 knjige više nego u prethodnom mjesecu. Koliko knjiga je radionica povezala u decembru?

Rješenje. Sve isto:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \desno)\cdot 4. \\ \end(align)$

Decembar je posljednji, 12. mjesec u godini, pa tražimo $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Ovo je odgovor - u decembru će biti ukoričeno 260 knjiga.

Pa, ako ste do sada pročitali, žurim da vam čestitam: uspješno ste završili „kurs mladog borca“ u aritmetičkim progresijama. Možete sa sigurnošću preći na sljedeću lekciju, gdje ćemo proučavati formulu za zbir progresije, kao i važne i vrlo korisne posljedice iz toga.

I. V. Yakovlev | Matematički materijali | MathUs.ru

Aritmetička progresija

Aritmetička progresija je posebna vrsta niza. Stoga, prije definiranja aritmetičke (a potom i geometrijske) progresije, moramo ukratko prodiskutirati o važnom konceptu niza brojeva.

Subsequence

Zamislite uređaj na čijem ekranu se jedan za drugim prikazuju određeni brojevi. Recimo 2; 7; 13; 1; 6; 0; 3; : : : Ovaj skup brojeva je upravo primjer niza.

Definicija. Brojčani niz je skup brojeva u kojem se svakom broju može dodijeliti jedinstveni broj (tj. povezan s jednim prirodnim brojem)1. Poziva se broj sa brojem n n-ti termin sekvence.

Dakle, u gornjem primjeru, prvi broj je 2, ovo je prvi član niza, koji se može označiti sa a1; broj pet ima broj 6 je peti član niza, koji se može označiti sa a5. Općenito, n-ti član niza označava se sa (ili bn, cn, itd.).

Vrlo zgodna situacija je kada se n-ti član niza može specificirati nekom formulom. Na primjer, formula an = 2n 3 specificira niz: 1; 1; 3; 5; 7; : : : Formula an = (1)n specificira niz: 1; 1; 1; 1; : : :

Nije svaki skup brojeva niz. Dakle, segment nije niz; sadrži “previše” brojeva za prenumeraciju. Skup R svih realnih brojeva također nije niz. Ove činjenice se dokazuju u toku matematičke analize.

Aritmetička progresija: osnovne definicije

Sada smo spremni da definišemo aritmetičku progresiju.

Definicija. Aritmetička progresija je niz u kojem svaki član (počevši od drugog) jednak zbiru prethodni član i neki fiksni broj (koji se naziva razlika aritmetičke progresije).

Na primjer, sekvenca 2; 5; 8; jedanaest; : : : je aritmetička progresija sa prvim članom 2 i razlikom 3. Sekvenca 7; 2; 3; 8; : : : je aritmetička progresija sa prvim članom 7 i razlikom 5. Sekvenca 3; 3; 3; : : : je aritmetička progresija s razlikom jednakom nuli.

Ekvivalentna definicija: niz an se naziva aritmetičkom progresijom ako je razlika an+1 an konstantna vrijednost (nezavisna od n).

Aritmetička progresija se naziva rastućom ako je njena razlika pozitivna, a opadajućom ako je njena razlika negativna.

1 Ali evo još sažetije definicije: niz je funkcija definirana na skupu prirodnih brojeva. Na primjer, niz realnih brojeva je funkcija f: N ! R.

Podrazumevano, nizovi se smatraju beskonačnim, odnosno sadrže beskonačan broj brojeva. Ali niko nam ne smeta da razmatramo konačne nizove; u stvari, bilo koji konačni skup brojeva može se nazvati konačnim nizom. Na primjer, krajnja sekvenca je 1; 2; 3; 4; 5 se sastoji od pet brojeva.

Formula za n-ti član aritmetičke progresije

Lako je shvatiti da je aritmetička progresija u potpunosti određena sa dva broja: prvim članom i razlikom. Stoga se postavlja pitanje: kako, znajući prvi član i razliku, pronaći proizvoljan član aritmetičke progresije?

Nije teško dobiti traženu formulu za n-ti član aritmetičke progresije. Neka an

aritmetička progresija s razlikom d. Imamo:

an+1 = an + d (n = 1; 2; :: :):

Posebno pišemo:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

i sada postaje jasno da je formula za an:

an = a1 + (n 1)d:

Zadatak 1. U aritmetičkoj progresiji 2; 5; 8; jedanaest; : : : pronađite formulu za n-ti član i izračunajte stoti član.

Rješenje. Prema formuli (1) imamo:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Svojstvo i znak aritmetičke progresije

Svojstvo aritmetičke progresije. U aritmetičkoj progresiji an za bilo koji

Drugim riječima, svaki član aritmetičke progresije (počevši od drugog) je aritmetička sredina njegovih susjednih članova.

Dokaz. Imamo:

a n 1+ a n+1

(an d) + (an + d)

što je bilo potrebno.

Više na opšti način, aritmetička progresija an zadovoljava jednakost

a n = a n k+ a n+k

za bilo koji n > 2 i bilo koji prirodni k< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Ispada da formula (2) služi ne samo kao neophodan već i kao dovoljan uslov da niz bude aritmetička progresija.

Znak aritmetičke progresije. Ako jednakost (2) vrijedi za sve n > 2, tada je niz an aritmetička progresija.

Dokaz. Prepišimo formulu (2) na sljedeći način:

a na n 1= a n+1a n:

Iz ovoga možemo vidjeti da razlika an+1 an ne zavisi od n, a to upravo znači da je niz an aritmetička progresija.

Svojstvo i znak aritmetičke progresije može se formulisati u obliku jednog iskaza; Radi praktičnosti, to ćemo učiniti za tri broja (ovo je situacija koja se često javlja u problemima).

Karakterizacija aritmetičke progresije. Tri broja a, b, c formiraju aritmetičku progresiju ako i samo ako je 2b = a + c.

Zadatak 2. (MSU, Ekonomski fakultet, 2007.) Tri broja 8x, 3 x2 i 4 u navedenom redoslijedu čine opadajuću aritmetičku progresiju. Pronađite x i označite razliku ove progresije.

Rješenje. Po svojstvu aritmetičke progresije imamo:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x = 5:

Ako je x = 1, onda dobijamo opadajuću progresiju od 8, 2, 4 sa razlikom od 6. Ako je x = 5, onda dobijamo rastuću progresiju od 40, 22, 4; ovaj slučaj nije prikladan.

Odgovor: x = 1, razlika je 6.

Zbir prvih n članova aritmetičke progresije

Legenda kaže da je jednog dana učiteljica rekla djeci da pronađu zbir brojeva od 1 do 100 i tiho sjela da čitaju novine. Međutim, za nekoliko minuta jedan dječak je rekao da je riješio problem. To je bio devetogodišnji Karl Fridrih Gaus, kasnije jedan od najvećih matematičara u istoriji.

Ideja malog Gausa je bila sljedeća. Neka

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Zapišimo ovaj iznos obrnutim redoslijedom:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

i dodajte ove dvije formule:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Svaki član u zagradama jednak je 101, a takvih je ukupno 100. Dakle

2S = 101 100 = 10100;

Koristimo ovu ideju da izvedemo formulu sume

S = a1 + a2 + : : : + an + a n n: (3)

Korisna modifikacija formule (3) se dobija ako u nju zamenimo formulu n-tog člana an = a1 + (n 1)d:

2a1 + (n 1)d

Zadatak 3. Nađite zbir svih pozitivnih trocifrenih brojeva deljivih sa 13.

Rješenje. Trocifreni brojevi, višekratnici od 13, formiraju aritmetičku progresiju sa prvim članom 104 i razlikom 13; N-i član ove progresije ima oblik:

an = 104 + 13(n 1) = 91 + 13n:

Hajde da saznamo koliko pojmova sadrži naša progresija. Da bismo to učinili, rješavamo nejednakost:

an 6 999; 91 + 13n 6 999;

n 6 908 13 = 6911 13 ; n 6 69:

Dakle, u našoj progresiji ima 69 članova. Koristeći formulu (4) nalazimo potrebnu količinu:

S = 2 104 + 68 13 69 = 37674: 2

Ili je aritmetika vrsta uređenog numeričkog niza čija se svojstva proučavaju školski kurs algebra. Ovaj članak detaljno razmatra pitanje kako pronaći zbir aritmetičke progresije.

Kakva je ovo progresija?

Prije nego što pređemo na pitanje (kako pronaći zbir aritmetičke progresije), vrijedi razumjeti o čemu govorimo.

Svaki niz realnih brojeva koji se dobije dodavanjem (oduzimanjem) neke vrijednosti od svakog prethodnog broja naziva se algebarska (aritmetička) progresija. Ova definicija, kada se prevede na matematički jezik, ima oblik:

evo me - serijski broj element serije a i . Dakle, znajući samo jedan početni broj, lako možete vratiti cijelu seriju. Parametar d u formuli naziva se razlika progresije.

Lako se može pokazati da za niz brojeva koji se razmatra vrijedi sljedeća jednakost:

a n = a 1 + d * (n - 1).

To jest, da biste pronašli vrijednost n-tog elementa po redu, trebate dodati razliku d prvom elementu a 1 n-1 puta.

Što je zbir aritmetičke progresije: formula

Prije nego što date formulu za navedeni iznos, vrijedi razmotriti jednostavnu poseban slučaj. S obzirom na progresiju prirodnih brojeva od 1 do 10, morate pronaći njihov zbir. Budući da je u progresiji (10) malo članova, moguće je problem riješiti direktno, odnosno sabrati sve elemente po redu.

S 10 = 1+2+3+4+5+6+7+8+9+10 = 55.

Vrijedi razmotriti jednu zanimljivu stvar: budući da se svaki član razlikuje od sljedećeg za istu vrijednost d = 1, tada će parno zbrajanje prvog s desetim, drugog s devetim i tako dalje dati isti rezultat. stvarno:

11 = 1+10 = 2+9 = 3+8 = 4+7 = 5+6.

Kao što vidite, ovih suma je samo 5, odnosno tačno dva puta manje od broja elemenata serije. Zatim pomnožite broj zbroja (5) sa rezultatom svakog zbroja (11), doći ćete do rezultata dobivenog u prvom primjeru.

Ako generalizujemo ove argumente, možemo napisati sljedeći izraz:

S n = n * (a 1 + a n) / 2.

Ovaj izraz pokazuje da uopće nije potrebno zbrajati sve elemente u nizu, dovoljno je znati vrijednost prvog a 1 i posljednjeg a n , kao i ukupan broj n termina.

Vjeruje se da je Gauss prvi pomislio na ovu jednakost kada je tražio rješenje za problem koji mu je dao učitelj: zbroj prvih 100 cijelih brojeva.

Zbir elemenata od m do n: formula

Formula data u prethodnom pasusu odgovara na pitanje kako pronaći zbir aritmetičke progresije (prvi elementi), ali je često u zadacima potrebno sabrati niz brojeva u sredini progresije. Kako uraditi?

Najlakši način da se odgovori na ovo pitanje je razmatranjem sljedećeg primjera: neka je potrebno pronaći zbir članova od m-tog do n-og. Da biste riješili problem, trebali biste dati segment od m do n progresije prikazati u obliku novog brojevnog niza. U ovom pogledu mth termin a m će biti prvo, a n će biti označeno brojem n-(m-1). U ovom slučaju, primjenom standardne formule za sumu, dobit će se sljedeći izraz:

S m n = (n - m + 1) * (a m + a n) / 2.

Primjer korištenja formula

Znajući kako pronaći zbroj aritmetičke progresije, vrijedi razmotriti jednostavan primjer korištenja gornjih formula.

Ispod je dato numerički niz, trebali biste pronaći zbir njegovih članova, počevši od 5. i završavajući sa 12.:

Dati brojevi označavaju da je razlika d jednaka 3. Koristeći izraz za n-ti element, možete pronaći vrijednosti 5. i 12. člana progresije. Ispada:

a 5 = a 1 + d * 4 = -4 + 3 * 4 = 8;

a 12 = a 1 + d * 11 = -4 + 3 * 11 = 29.

Poznavanje vrijednosti brojeva na krajevima datog algebarska progresija, a također znajući koje brojeve u redu zauzimaju, možete koristiti formulu za iznos dobiven u prethodnom paragrafu. Ispostaviće se:

S 5 12 = (12 - 5 + 1) * (8 + 29) / 2 = 148.

Vrijedi napomenuti da se ova vrijednost može dobiti drugačije: prvo pronađite zbir prvih 12 elemenata koristeći standardnu ​​formulu, zatim izračunajte zbir prva 4 elementa koristeći istu formulu, a zatim oduzmite drugi od prvog zbira.

Ako za svaki prirodan broj n odgovara realnom broju a n , onda kažu da je dato numerički niz :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Dakle, niz brojeva je funkcija prirodnog argumenta.

Broj a 1 pozvao prvi član niza , broj a 2 drugi član niza , broj a 3 treće i tako dalje. Broj a n pozvao n-ti član niza , i prirodni broj nnjegov broj .

Od dva susjedna člana a n I a n +1 član sekvence a n +1 pozvao naknadno (prema a n ), A a n prethodni (prema a n +1 ).

Da biste definirali niz, morate navesti metodu koja vam omogućava da pronađete člana niza s bilo kojim brojem.

Često se sekvenca specificira pomoću formule n-tog člana , odnosno formula koja vam omogućava da odredite člana niza po njegovom broju.

Na primjer,

niz pozitivnih neparnih brojeva može se dati formulom

a n= 2n- 1,

i redoslijed naizmjeničnog 1 I -1 - formula

b n = (-1)n +1 .

Redoslijed se može odrediti ponavljajuća formula, odnosno formula koja izražava bilo koji član niza, počevši od nekih, preko prethodnih (jedan ili više) članova.

Na primjer,

Ako a 1 = 1 , A a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Ako a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , tada se prvih sedam članova numeričkog niza uspostavlja na sljedeći način:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sekvence mogu biti final I beskrajno .

Slijed se zove krajnji , ako ima konačan broj članova. Slijed se zove beskrajno , ako ima beskonačno mnogo članova.

Na primjer,

niz dvocifrenih prirodnih brojeva:

10, 11, 12, 13, . . . , 98, 99

final.

Niz prostih brojeva:

2, 3, 5, 7, 11, 13, . . .

beskrajno.

Slijed se zove povećanje , ako je svaki njegov član, počevši od drugog, veći od prethodnog.

Slijed se zove opadajući , ako je svaki njegov član, počevši od drugog, manji od prethodnog.

Na primjer,

2, 4, 6, 8, . . . , 2n, . . . — rastući redoslijed;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . — opadajuća sekvenca.

Niz čiji se elementi ne smanjuju kako se broj povećava ili, obrnuto, ne povećavaju, naziva se monotoni niz .

Monotoni nizovi, posebno, su rastuće sekvence i opadajuće sekvence.

Aritmetička progresija

Aritmetička progresija je niz u kojem je svaki član, počevši od drugog, jednak prethodnom, kojem se dodaje isti broj.

a 1 , a 2 , a 3 , . . . , a n, . . .

je aritmetička progresija za bilo koji prirodan broj n ispunjen je uslov:

a n +1 = a n + d,

Gdje d - određeni broj.

Dakle, razlika između narednih i prethodnih članova date aritmetičke progresije je uvijek konstantna:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Broj d pozvao razlika aritmetičke progresije.

Za definiranje aritmetičke progresije dovoljno je naznačiti njen prvi član i razliku.

Na primjer,

Ako a 1 = 3, d = 4 , tada nalazimo prvih pet članova niza kako slijedi:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

Za aritmetičku progresiju s prvim članom a 1 i razlika d ona n

a n = a 1 + (n- 1)d.

Na primjer,

pronađite trideseti član aritmetičke progresije

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

onda očigledno

a n=
a n-1 + a n+1
2

Svaki član aritmetičke progresije, počevši od drugog, jednak je aritmetičkoj sredini prethodnog i narednih članova.

brojevi a, b i c su uzastopni članovi neke aritmetičke progresije ako i samo ako je jedan od njih jednak aritmetičkoj sredini druga dva.

Na primjer,

a n = 2n- 7 , je aritmetička progresija.

Koristimo gornju izjavu. Imamo:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

dakle,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Zapiši to n th član aritmetičke progresije može se naći ne samo kroz a 1 , ali i bilo koji prethodni a k

a n = a k + (n- k)d.

Na primjer,

Za a 5 može se zapisati

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

onda očigledno

a n=
a n-k + a n+k
2

bilo koji član aritmetičke progresije, počevši od drugog, jednak je polovini sume jednako raspoređenih članova ove aritmetičke progresije.

Osim toga, za bilo koju aritmetičku progresiju vrijedi sljedeća jednakost:

a m + a n = a k + a l,

m + n = k + l.

Na primjer,

u aritmetičkoj progresiji

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, jer

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

prvo n članovi aritmetičke progresije jednak je proizvodu polovine zbira ekstremnih članova i broja članova:

Odavde, posebno, slijedi da ako trebate zbrojiti pojmove

a k, a k +1 , . . . , a n,

tada prethodna formula zadržava svoju strukturu:

Na primjer,

u aritmetičkoj progresiji 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Ako je data aritmetička progresija, onda su količine a 1 , a n, d, n IS n povezane sa dve formule:

Dakle, ako su date vrijednosti tri od ovih veličina, tada se iz ovih formula određuju odgovarajuće vrijednosti druge dvije veličine, kombinirane u sistem od dvije jednadžbe sa dvije nepoznate.

Aritmetička progresija je monoton niz. pri čemu:

  • Ako d > 0 , onda se povećava;
  • Ako d < 0 , tada se smanjuje;
  • Ako d = 0 , tada će niz biti stacionaran.

Geometrijska progresija

Geometrijska progresija je niz u kojem je svaki član, počevši od drugog, jednak prethodnom pomnoženom istim brojem.

b 1 , b 2 , b 3 , . . . , b n, . . .

je geometrijska progresija za bilo koji prirodan broj n ispunjen je uslov:

b n +1 = b n · q,

Gdje q ≠ 0 - određeni broj.

Dakle, omjer sljedećeg člana date geometrijske progresije u odnosu na prethodni je konstantan broj:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Broj q pozvao nazivnik geometrijske progresije.

Za definiranje geometrijske progresije dovoljno je naznačiti njen prvi član i nazivnik.

Na primjer,

Ako b 1 = 1, q = -3 , tada nalazimo prvih pet članova niza kako slijedi:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 i imenilac q ona n th pojam se može naći pomoću formule:

b n = b 1 · qn -1 .

Na primjer,

pronađite sedmi član geometrijske progresije 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

b n-1 = b 1 · qn -2 ,

b n = b 1 · qn -1 ,

b n +1 = b 1 · qn,

onda očigledno

b n 2 = b n -1 · b n +1 ,

svaki član geometrijske progresije, počevši od drugog, jednak je geometrijskoj sredini (proporcionalnoj) prethodnog i narednih članova.

Budući da je i obrnuto tačno, vrijedi sljedeća izjava:

brojevi a, b i c su uzastopni članovi neke geometrijske progresije ako i samo ako je kvadrat jednog od njih jednak proizvodu druga dva, odnosno jedan od brojeva je geometrijska sredina druga dva.

Na primjer,

Dokažimo da je niz dat formulom b n= -3 2 n , je geometrijska progresija. Koristimo gornju izjavu. Imamo:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

dakle,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

što dokazuje željenu tvrdnju.

Zapiši to n Ti član geometrijske progresije može se naći ne samo kroz b 1 , ali i svaki prethodni član b k , za što je dovoljno koristiti formulu

b n = b k · qn - k.

Na primjer,

Za b 5 može se zapisati

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q 2,

b 5 = b 4 · q.

b n = b k · qn - k,

b n = b n - k · q k,

onda očigledno

b n 2 = b n - k· b n + k

Kvadrat bilo kojeg člana geometrijske progresije, počevši od drugog, jednak je proizvodu članova ove progresije jednako udaljene od njega.

Osim toga, za bilo koju geometrijsku progresiju vrijedi jednakost:

b m· b n= b k· b l,

m+ n= k+ l.

Na primjer,

u geometrijskoj progresiji

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , jer

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

prvo n članovi geometrijske progresije sa nazivnikom q 0 izračunato po formuli:

I kada q = 1 - prema formuli

S n= nb 1

Imajte na umu da ako trebate zbrojiti pojmove

b k, b k +1 , . . . , b n,

tada se koristi formula:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - qn - k +1
.
1 - q

Na primjer,

u geometrijskoj progresiji 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Ako se da geometrijska progresija, zatim količine b 1 , b n, q, n I S n povezane sa dve formule:

Dakle, ako su date vrijednosti bilo koje tri od ovih veličina, tada se iz ovih formula određuju odgovarajuće vrijednosti druge dvije veličine, kombinirane u sistem od dvije jednadžbe sa dvije nepoznate.

Za geometrijsku progresiju s prvim članom b 1 i imenilac q odvijaju se sljedeće svojstva monotonosti :

  • napredak se povećava ako je ispunjen jedan od sljedećih uslova:

b 1 > 0 I q> 1;

b 1 < 0 I 0 < q< 1;

  • Progresija se smanjuje ako je ispunjen jedan od sljedećih uslova:

b 1 > 0 I 0 < q< 1;

b 1 < 0 I q> 1.

Ako q< 0 , tada je geometrijska progresija naizmjenična: njegovi članovi s neparnim brojevima imaju isti predznak kao i prvi član, a članovi s parnim brojevima imaju suprotan predznak. Jasno je da naizmjenična geometrijska progresija nije monotona.

Proizvod prvog n termini geometrijske progresije mogu se izračunati pomoću formule:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

Na primjer,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Beskonačno opadajuća geometrijska progresija

Beskonačno opadajuća geometrijska progresija naziva se beskonačna geometrijska progresija čiji je modul nazivnika manji 1 , to je

|q| < 1 .

Imajte na umu da beskonačno opadajuća geometrijska progresija možda nije opadajući niz. Odgovara prilici

1 < q< 0 .

S takvim nazivnikom, niz se mijenja. Na primjer,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Zbir beskonačno opadajuće geometrijske progresije navedite broj kojem se zbir prvih približava bez ograničenja n članovi progresije sa neograničenim povećanjem broja n . Ovaj broj je uvijek konačan i izražava se formulom

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Na primjer,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Odnos aritmetičke i geometrijske progresije

Aritmetička i geometrijska progresija su usko povezane. Pogledajmo samo dva primjera.

a 1 , a 2 , a 3 , . . . d , To

b a 1 , b a 2 , b a 3 , . . . b d .

Na primjer,

1, 3, 5, . . . - aritmetička progresija s razlikom 2 I

7 1 , 7 3 , 7 5 , . . . - geometrijska progresija sa nazivnikom 7 2 .

b 1 , b 2 , b 3 , . . . - geometrijska progresija sa nazivnikom q , To

log a b 1, log a b 2, log a b 3, . . . - aritmetička progresija s razlikom log aq .

Na primjer,

2, 12, 72, . . . - geometrijska progresija sa nazivnikom 6 I

lg 2, lg 12, lg 72, . . . - aritmetička progresija s razlikom lg 6 .

Zbir aritmetičke progresije.

Zbir aritmetičke progresije je jednostavna stvar. I po značenju i po formuli. Ali ima svakakvih zadataka na ovu temu. Od osnovnog do sasvim solidnog.

Prvo, shvatimo značenje i formulu iznosa. A onda ćemo odlučiti. Za vaše zadovoljstvo.) Značenje količine je jednostavno kao mukanje. Da biste pronašli zbir aritmetičke progresije, trebate samo pažljivo sabrati sve njegove članove. Ako je ovih pojmova malo, možete dodati bez ikakvih formula. Ali ako ima puno, ili puno... dodatak je neugodan.) U ovom slučaju formula dolazi u pomoć.

Formula za iznos je jednostavna:

Hajde da shvatimo kakva su slova uključena u formulu. Ovo će dosta razjasniti stvari.

S n - zbir aritmetičke progresije. Rezultat zbrajanja svimačlanovi, sa prvo By zadnji. Važno je. Tačno se sabiraju Svečlanovi u nizu, bez preskakanja ili preskakanja. I, tačnije, počevši od prvo. U problemima kao što je pronalaženje zbira trećeg i osmog člana, ili zbira petog do dvadesetog člana, direktna primjena formule će razočarati.)

a 1 - prvočlan progresije. Ovde je sve jasno, jednostavno prvo broj reda.

a n- zadnjičlan progresije. Poslednji broj serije. Nije baš poznato ime, ali kada se primjenjuje na količinu, vrlo je prikladno. Onda ćete se sami uvjeriti.

n - broj posljednjeg člana. Važno je shvatiti da je u formuli ovaj broj poklapa se sa brojem dodatih pojmova.

Hajde da definišemo koncept zadnjičlan a n. Šaljivo pitanje: koji će član biti posljednji ako je dato beskrajno aritmetička progresija?)

Da biste odgovorili pouzdano, morate razumjeti elementarno značenje aritmetičke progresije i... pažljivo pročitati zadatak!)

U zadatku pronalaženja zbira aritmetičke progresije uvijek se pojavljuje posljednji član (direktno ili indirektno), koje bi trebalo ograničiti. Inače, konačan, konkretan iznos jednostavno ne postoji. Za rješenje nije bitno da li je progresija data: konačna ili beskonačna. Nije važno kako je zadan: niz brojeva ili formula za n-ti član.

Najvažnije je shvatiti da formula funkcionira od prvog člana progresije do člana s brojem n. Zapravo, puno ime formule izgleda ovako: zbir prvih n članova aritmetičke progresije. Broj ovih prvih članova, tj. n, određen je isključivo zadatkom. U zadatku su sve ove vrijedne informacije često šifrirane, da... Ali nema veze, u primjerima ispod otkrivamo ove tajne.)

Primjeri zadataka na zbir aritmetičke progresije.

Kao prvo, korisne informacije:

Glavna poteškoća u zadacima koji uključuju zbir aritmetičke progresije leži u ispravnom određivanju elemenata formule.

Autori zadataka šifriraju upravo ove elemente bezgraničnom maštom.) Ovdje je glavna stvar ne bojati se. Razumijevajući suštinu elemenata, dovoljno ih je jednostavno dešifrirati. Pogledajmo nekoliko primjera detaljno. Počnimo sa zadatkom zasnovanim na stvarnom GIA.

1. Aritmetička progresija je data uslovom: a n = 2n-3.5. Pronađite zbroj njegovih prvih 10 članova.

Dobar posao. Lako.) Šta trebamo znati da bismo odredili količinu pomoću formule? Prvi član a 1, prošli mandat a n, da broj posljednjeg člana n.

Gdje mogu dobiti broj posljednjeg člana? n? Da, tu, pod uslovom! Piše: nađi zbir prvih 10 članova. Pa, sa kojim će brojem? posljednje, deseti član?) Nećete vjerovati, njegov broj je deseti!) Stoga, umjesto a n Zamijenit ćemo u formulu a 10, i umjesto toga n- deset. Ponavljam, broj zadnjeg člana se poklapa sa brojem članova.

Ostaje da se utvrdi a 1 I a 10. Ovo se lako izračunava pomoću formule za n-ti član, koja je data u opisu problema. Ne znate kako to učiniti? Pohađajte prethodnu lekciju, bez ovoga nema šanse.

a 1= 2 1 - 3,5 = -1,5

a 10=2·10 - 3,5 =16,5

S n = S 10.

Saznali smo značenje svih elemenata formule za zbir aritmetičke progresije. Ostaje samo da ih zamijenite i prebrojite:

To je to. Odgovor: 75.

Još jedan zadatak baziran na GIA. Malo komplikovanije:

2. Zadata je aritmetička progresija (a n), čija je razlika 3,7; a 1 =2.3. Pronađite zbir njegovih prvih 15 članova.

Odmah pišemo formulu sume:

Ova formula nam omogućava da pronađemo vrijednost bilo kojeg pojma po njegovom broju. Tražimo jednostavnu zamjenu:

a 15 = 2,3 + (15-1) 3,7 = 54,1

Ostaje zamijeniti sve elemente u formulu za zbir aritmetičke progresije i izračunati odgovor:

Odgovor: 423.

Usput, ako u formuli zbira umjesto a n Jednostavno zamijenimo formulu za n-ti član i dobijemo:

Predstavimo slične i dobijemo novu formulu za zbir članova aritmetičke progresije:

Kao što vidite, n-ti pojam ovdje nije potreban a n. Kod nekih problema ova formula jako pomaže, da... Možete zapamtiti ovu formulu. Ili ga možete jednostavno prikazati u pravo vrijeme, kao ovdje. Na kraju krajeva, uvijek morate zapamtiti formulu za zbir i formulu za n-ti član.)

Sada zadatak u obliku kratke enkripcije):

3. Nađite zbir svih pozitivnih dvocifrenih brojeva koji su višestruki od tri.

Vau! Ni vaš prvi član, ni zadnji, ni napredovanje uopšte... Kako živjeti!?

Morat ćete razmišljati svojom glavom i iz stanja izvući sve elemente zbira aritmetičke progresije. Znamo šta su dvocifreni brojevi. Sastoje se od dva broja.) Koji će biti dvocifreni broj prvo? 10, vjerovatno.) A poslednja stvar dvocifreni broj? 99, naravno! Trocifrene će ga pratiti...

Višestruki od tri... Hm... Ovo su brojevi koji su djeljivi sa tri, evo! Deset nije deljivo sa tri, 11 nije deljivo... 12... je deljivo! Dakle, nešto se pojavljuje. Već možete zapisati niz prema uslovima problema:

12, 15, 18, 21, ... 96, 99.

Hoće li ova serija biti aritmetička progresija? Svakako! Svaki pojam razlikuje se od prethodnog za striktno tri. Ako nekom pojmu dodate 2 ili 4, recimo, rezultat, tj. novi broj više nije djeljiv sa 3. Možete odmah odrediti razliku aritmetičke progresije: d = 3. Dobro će doći!)

Dakle, možemo sigurno zapisati neke parametre progresije:

Koji će biti broj? n zadnji član? Ko misli da je 99 kobno se vara... Brojevi uvijek idu nizom, ali naši članovi preskaču tri. Ne poklapaju se.

Ovdje postoje dva rješenja. Jedan od načina je za super vrijedne. Možete zapisati progresiju, cijeli niz brojeva i prstom prebrojati broj članova.) Drugi način je za promišljene. Morate zapamtiti formulu za n-ti član. Ako primijenimo formulu na naš problem, otkrićemo da je 99 trideseti član progresije. One. n = 30.

Pogledajmo formulu za zbir aritmetičke progresije:

Gledamo i radujemo se.) Iz opisa problema smo izvukli sve što je potrebno za izračunavanje iznosa:

a 1= 12.

a 30= 99.

S n = S 30.

Ostaje samo elementarna aritmetika. Zamjenjujemo brojeve u formulu i izračunavamo:

Odgovor: 1665

Još jedna vrsta popularne slagalice:

4. S obzirom na aritmetičku progresiju:

-21,5; -20; -18,5; -17; ...

Nađi zbir članova od dvadesetog do trideset četvrtog.

Gledamo formulu za iznos i... uznemirimo se.) Formula, da vas podsjetim, izračunava iznos od prvečlan. A u zadatku morate izračunati sumu od dvadesetog... Formula neće raditi.

Možete, naravno, ispisati cijelu progresiju u nizu, i dodati pojmove od 20 do 34. Ali... to je nekako glupo i dugo traje, zar ne?)

Postoji elegantnije rješenje. Podijelimo našu seriju na dva dijela. Prvi dio će biti od prvog mandata do devetnaestog. Drugi dio - od dvadeset do trideset četiri. Jasno je da ako izračunamo zbir članova prvog dijela S 1-19, dodajmo ga sa zbirom članova drugog dijela S 20-34, dobijamo zbir progresije od prvog člana do trideset četvrtog S 1-34. Volim ovo:

S 1-19 + S 20-34 = S 1-34

Iz ovoga možemo vidjeti da nađemo zbir S 20-34 može se uraditi jednostavnim oduzimanjem

S 20-34 = S 1-34 - S 1-19

U obzir se uzimaju oba iznosa na desnoj strani od prvečlan, tj. standardna formula sume je prilično primjenjiva na njih. Hajde da počnemo?

Izvlačimo parametre progresije iz iskaza problema:

d = 1,5.

a 1= -21,5.

Da bismo izračunali zbir prvih 19 i prva 34 člana, trebat će nam 19. i 34. član. Izračunavamo ih koristeći formulu za n-ti član, kao u zadatku 2:

a 19= -21,5 +(19-1) 1,5 = 5,5

a 34= -21,5 +(34-1) 1,5 = 28

Ništa nije ostalo. Od zbira 34 člana oduzmite zbir 19 članova:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Odgovor: 262.5

Jedna važna napomena! Postoji vrlo koristan trik u rješavanju ovog problema. Umjesto direktnog obračuna šta ti treba (S 20-34), brojali smo nešto što se čini da nije potrebno - S 1-19. A onda su odlučili S 20-34, odbacujući nepotrebno iz kompletnog rezultata. Ova vrsta "finte sa ušima" često vas spašava od opakih problema.)

U ovoj lekciji smo se bavili problemima za koje je dovoljno razumjeti značenje zbira aritmetičke progresije. Pa, morate znati nekoliko formula.)

Praktični savjeti:

Kada rješavate bilo koji zadatak koji uključuje zbir aritmetičke progresije, preporučujem da odmah napišete dvije glavne formule iz ove teme.

Formula za n-ti član:

Ove formule će vam odmah reći šta da tražite i u kom pravcu da razmišljate kako biste rešili problem. Pomaže.

A sada zadaci za samostalno rješavanje.

5. Pronađite zbir svih dvocifrenih brojeva koji nisu djeljivi sa tri.

Cool?) Nagoveštaj je skriven u napomeni za problem 4. Pa, problem 3 će pomoći.

6. Aritmetička progresija je data uslovom: a 1 = -5,5; a n+1 = a n +0,5. Pronađite zbir njegovih prva 24 člana.

Neobično?) Ovo je formula koja se ponavlja. O tome možete pročitati u prethodnoj lekciji. Nemojte zanemariti vezu, takvi problemi se često nalaze u Državnoj akademiji nauka.

7. Vasya je uštedio novac za odmor. Čak 4550 rubalja! I odlučio sam da svojoj omiljenoj osobi (sebi) poklonim nekoliko dana sreće). Živite lijepo, ne uskraćujući sebi ništa. Potrošite 500 rubalja prvog dana, a svaki naredni dan potrošite 50 rubalja više od prethodnog! Dok novac ne ponestane. Koliko je dana sreće imao Vasja?

Je li teško?) Dodatna formula iz zadatka 2 će pomoći.

Odgovori (u neredu): 7, 3240, 6.

Ako vam se sviđa ovaj sajt...

Inače, imam još par zanimljivih stranica za vas.)

Možete vježbati rješavanje primjera i saznati svoj nivo. Testiranje sa trenutnom verifikacijom. Učimo - sa interesovanjem!)

Možete se upoznati sa funkcijama i izvedenicama.