Ang kabuuan ng unang 6 na numero ng isang pag-unlad ng arithmetic. Arithmetic at geometric progressions


Arithmetic progression pangalanan ang pagkakasunod-sunod ng mga numero (mga miyembro ng isang progression)

Kung saan ang bawat kasunod na termino ay naiiba mula sa nauna sa pamamagitan ng isang bakal na termino, na tinatawag ding pagkakaiba ng hakbang o pag-unlad.

Kaya, sa pamamagitan ng pagtatakda ng hakbang ng pag-unlad at ang unang termino nito, mahahanap mo ang alinman sa mga elemento nito gamit ang formula

Mga katangian ng isang pag-unlad ng aritmetika

1) Ang bawat miyembro ng arithmetic progression, simula sa pangalawang numero, ay ang arithmetic mean ng nakaraan at susunod na miyembro ng progression

Totoo rin ang kabaligtaran. Kung ang arithmetic mean ng mga kalapit na odd (even) na mga miyembro ng progression ay katumbas ng miyembro na nasa pagitan nila, kung gayon ang sequence ng mga numero ay isang arithmetic progression. Sa pamamagitan ng assertion na ito ay napakadaling suriin ang anumang pagkakasunud-sunod.

Sa pamamagitan din ng pag-aari ng pag-unlad ng arithmetic, ang formula sa itaas ay maaaring pangkalahatan sa mga sumusunod

Madali itong i-verify kung isusulat namin ang mga termino sa kanan ng equal sign

Madalas itong ginagamit sa pagsasanay upang gawing simple ang mga kalkulasyon sa mga problema.

2) Ang kabuuan ng unang n termino ng isang pag-unlad ng arithmetic ay kinakalkula ng formula

Alalahaning mabuti ang formula para sa kabuuan ng isang pag-unlad ng aritmetika, ito ay kailangang-kailangan sa mga kalkulasyon at medyo karaniwan sa mga simpleng sitwasyon sa buhay.

3) Kung kailangan mong hanapin hindi ang buong kabuuan, ngunit isang bahagi ng sequence simula sa k -th na miyembro nito, kung gayon ang sumusunod na sum formula ay magiging kapaki-pakinabang sa iyo

4) Isang praktikal na interes na hanapin ang kabuuan ng n mga miyembro ng isang pag-unlad ng arithmetic simula sa kth na numero. Upang gawin ito, gamitin ang formula

Dito nagtatapos ang teoretikal na materyal at nagpapatuloy tayo sa paglutas ng mga problema na karaniwan sa pagsasanay.

Halimbawa 1. Hanapin ang ikaapatnapung termino ng pag-unlad ng arithmetic 4;7;...

Solusyon:

Ayon sa kondisyon, mayroon tayo

Tukuyin ang hakbang sa pag-unlad

Ayon sa kilalang pormula, makikita natin ang ikaapatnapung termino ng pag-unlad

Halimbawa2. Ang arithmetic progression ay ibinibigay ng ikatlo at ikapitong miyembro nito. Hanapin ang unang termino ng progression at ang kabuuan ng sampu.

Solusyon:

Isinulat namin ang mga ibinigay na elemento ng pag-unlad ayon sa mga formula

Ibinabawas namin ang unang equation mula sa pangalawang equation, bilang isang resulta nakita namin ang hakbang ng pag-unlad

Ang nahanap na halaga ay pinapalitan sa alinman sa mga equation upang mahanap ang unang termino ng pag-unlad ng arithmetic

Kalkulahin ang kabuuan ng unang sampung termino ng pag-unlad

Nang hindi naglalapat ng mga kumplikadong kalkulasyon, nakita namin ang lahat ng kinakailangang halaga.

Halimbawa 3. Ang pag-unlad ng aritmetika ay ibinibigay ng denominator at ng isa sa mga miyembro nito. Hanapin ang unang termino ng progression, ang kabuuan ng 50 termino nito simula sa 50, at ang kabuuan ng unang 100.

Solusyon:

Isulat natin ang formula para sa ika-daang elemento ng progression

at hanapin ang una

Batay sa una, makikita natin ang ika-50 termino ng pag-unlad

Paghahanap ng kabuuan ng bahagi ng pag-unlad

at ang kabuuan ng unang 100

Ang kabuuan ng pag-unlad ay 250.

Halimbawa 4

Hanapin ang bilang ng mga miyembro ng isang arithmetic progression kung:

a3-a1=8, a2+a4=14, Sn=111.

Solusyon:

Isinulat namin ang mga equation sa mga tuntunin ng unang termino at ang hakbang ng pag-unlad at tukuyin ang mga ito

Pinapalitan namin ang mga nakuhang halaga sa sum formula upang matukoy ang bilang ng mga miyembro sa kabuuan

Paggawa ng mga pagpapasimple

at magpasya quadratic equation

Sa dalawang halaga na natagpuan, tanging ang numero 8 ay angkop para sa kondisyon ng problema. Kaya ang kabuuan ng unang walong termino ng pag-unlad ay 111.

Halimbawa 5

lutasin ang equation

1+3+5+...+x=307.

Solusyon: Ang equation na ito ay ang kabuuan ng isang arithmetic progression. Isinulat namin ang unang termino nito at hanapin ang pagkakaiba ng pag-unlad


Oo, oo: ang pag-unlad ng aritmetika ay hindi isang laruan para sa iyo :)

Buweno, mga kaibigan, kung binabasa mo ang tekstong ito, kung gayon ang ebidensya ng panloob na takip ay nagsasabi sa akin na hindi mo pa rin alam kung ano ang pag-unlad ng aritmetika, ngunit talagang (hindi, tulad nito: SOOOOO!) gusto mong malaman. Samakatuwid, hindi kita pahihirapan ng mahabang pagpapakilala at agad na bumaba sa negosyo.

Upang magsimula, isang pares ng mga halimbawa. Isaalang-alang ang ilang hanay ng mga numero:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Ano ang pagkakatulad ng lahat ng set na ito? Sa unang tingin, wala. Pero sa totoo lang may something. Namely: bawat susunod na elemento ay naiiba mula sa nauna sa pamamagitan ng parehong numero.

Maghusga para sa iyong sarili. Ang unang set ay magkasunod na numero lamang, bawat isa ay higit pa kaysa sa nauna. Sa pangalawang kaso, ang pagkakaiba sa pagitan nakatayo na mga numero ay katumbas na ng lima, ngunit ang pagkakaibang ito ay pare-pareho pa rin. Sa ikatlong kaso, may mga ugat sa pangkalahatan. Gayunpaman, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, habang $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, ibig sabihin. kung saan ang bawat susunod na elemento ay tumataas lamang ng $\sqrt(2)$ (at huwag matakot na ang numerong ito ay hindi makatwiran).

Kaya: ang lahat ng gayong mga pagkakasunud-sunod ay tinatawag lamang na mga pag-unlad ng aritmetika. Bigyan natin ng mahigpit na kahulugan:

Kahulugan. Ang isang pagkakasunud-sunod ng mga numero kung saan ang bawat susunod ay naiiba mula sa nauna sa pamamagitan ng eksaktong parehong halaga ay tinatawag na aritmetika na pag-unlad. Ang mismong halaga kung saan naiiba ang mga numero ay tinatawag na pagkakaiba sa pag-unlad at kadalasang tinutukoy ng titik na $d$.

Notation: $\left(((a)_(n)) \right)$ ang mismong progression, $d$ ang difference nito.

At ilan lamang sa mahahalagang komento. Una, ang pag-unlad ay isinasaalang-alang lamang maayos pagkakasunud-sunod ng mga numero: pinapayagan silang basahin nang mahigpit sa pagkakasunud-sunod kung saan nakasulat ang mga ito - at wala nang iba pa. Hindi ka maaaring muling ayusin o magpalit ng mga numero.

Pangalawa, ang sequence mismo ay maaaring may hangganan o walang katapusan. Halimbawa, ang set (1; 2; 3) ay malinaw na isang may hangganang pag-unlad ng aritmetika. Ngunit kung sumulat ka ng isang bagay tulad ng (1; 2; 3; 4; ...) - ito ay isa nang walang katapusang pag-unlad. Ang ellipsis pagkatapos ng apat, kumbaga, ay nagpapahiwatig na marami pang mga numero ang nagpapatuloy. Walang hanggan marami, halimbawa. :)

Gusto ko ring tandaan na ang mga pag-unlad ay dumarami at bumababa. Nakita na natin ang mga dumarami - ang parehong set (1; 2; 3; 4; ...). Narito ang mga halimbawa ng bumababang pag-unlad:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Okay, okay: ang huling halimbawa ay maaaring mukhang masyadong kumplikado. Ngunit ang natitira, sa palagay ko, naiintindihan mo. Samakatuwid, ipinakilala namin ang mga bagong kahulugan:

Kahulugan. Ang pag-unlad ng aritmetika ay tinatawag na:

  1. pagtaas kung ang bawat susunod na elemento ay mas malaki kaysa sa nauna;
  2. bumababa, kung, sa kabaligtaran, ang bawat kasunod na elemento ay mas mababa kaysa sa nauna.

Bilang karagdagan, may mga tinatawag na "nakatigil" na mga pagkakasunud-sunod - binubuo sila ng parehong umuulit na numero. Halimbawa, (3; 3; 3; ...).

Isang tanong na lang ang natitira: kung paano makilala ang isang pagtaas ng pag-unlad mula sa isang bumababa? Sa kabutihang palad, ang lahat dito ay nakasalalay lamang sa tanda ng numerong $d$, i.e. mga pagkakaiba sa pag-unlad:

  1. Kung $d \gt 0$, kung gayon ang pag-unlad ay tumataas;
  2. Kung $d \lt 0$, kung gayon ang pag-unlad ay malinaw na bumababa;
  3. Sa wakas, mayroong kaso $d=0$ — sa kasong ito ang buong pag-unlad ay nabawasan sa isang nakatigil na pagkakasunud-sunod ng magkaparehong mga numero: (1; 1; 1; 1; ...), atbp.

Subukan nating kalkulahin ang pagkakaiba $d$ para sa tatlong bumababa na pag-unlad sa itaas. Upang gawin ito, sapat na kumuha ng anumang dalawang katabing elemento (halimbawa, ang una at pangalawa) at ibawas mula sa numero sa kanan, ang numero sa kaliwa. Magiging ganito ang hitsura:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Tulad ng nakikita mo, sa lahat ng tatlong mga kaso ang pagkakaiba ay talagang naging negatibo. At ngayon na higit pa o hindi gaanong nalaman natin ang mga kahulugan, oras na para malaman kung paano inilarawan ang mga pag-unlad at kung anong mga katangian ang mayroon sila.

Mga miyembro ng progression at ang paulit-ulit na formula

Dahil ang mga elemento ng aming mga sequence ay hindi maaaring palitan, maaari silang bilangin:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Ang mga indibidwal na elemento ng set na ito ay tinatawag na mga miyembro ng progression. Ang mga ito ay ipinahiwatig sa ganitong paraan sa tulong ng isang numero: ang unang miyembro, ang pangalawang miyembro, at iba pa.

Bilang karagdagan, tulad ng alam na natin, ang mga kalapit na miyembro ng pag-unlad ay nauugnay sa pamamagitan ng formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

Sa madaling salita, upang mahanap ang $n$th term ng progression, kailangan mong malaman ang $n-1$th term at ang pagkakaiba $d$. Ang ganitong pormula ay tinatawag na paulit-ulit, dahil sa tulong nito maaari kang makahanap ng anumang numero, alam lamang ang nauna (at sa katunayan, lahat ng mga nauna). Ito ay napaka-inconvenient, kaya mayroong isang mas nakakalito na formula na binabawasan ang anumang pagkalkula sa unang termino at ang pagkakaiba:

\[((a)_(n))=((a)_(1))+\kaliwa(n-1 \kanan)d\]

Marahil ay nakita mo na ang formula na ito dati. Gusto nilang ibigay ito sa lahat ng uri ng mga reference na libro at reshebnik. At sa anumang matinong aklat-aralin sa matematika, isa ito sa una.

Gayunpaman, iminumungkahi kong magsanay ka ng kaunti.

Gawain bilang 1. Isulat ang unang tatlong termino ng arithmetic progression $\left(((a)_(n)) \right)$ kung $((a)_(1))=8,d=-5$.

Solusyon. Kaya, alam natin ang unang termino na $((a)_(1))=8$ at ang pagkakaiba ng pag-unlad $d=-5$. Gamitin natin ang formula na ibinigay at palitan ang $n=1$, $n=2$ at $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\kaliwa(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\kaliwa(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\kaliwa(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Sagot: (8; 3; -2)

Iyon lang! Tandaan na ang aming pag-unlad ay bumababa.

Siyempre, hindi maaaring palitan ang $n=1$ - alam na natin ang unang termino. Gayunpaman, sa pamamagitan ng pagpapalit sa yunit, tiniyak namin na kahit sa unang termino ay gumagana ang aming formula. Sa ibang mga kaso, ang lahat ay bumaba sa banal na aritmetika.

Gawain bilang 2. Isulat ang unang tatlong termino ng isang pag-unlad ng aritmetika kung ang ikapitong termino nito ay −40 at ang ikalabimpitong termino nito ay −50.

Solusyon. Isinulat namin ang kondisyon ng problema sa karaniwang mga termino:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \tama.\]

Inilagay ko ang sign ng system dahil ang mga kinakailangan na ito ay dapat matugunan nang sabay-sabay. At ngayon napapansin natin na kung ibawas natin ang unang equation mula sa pangalawang equation (may karapatan tayong gawin ito, dahil mayroon tayong sistema), makukuha natin ito:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Kaya lang, nakita namin ang pagkakaiba ng pag-unlad! Ito ay nananatiling palitan ang nahanap na numero sa alinman sa mga equation ng system. Halimbawa, sa una:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Ngayon, alam ang unang termino at ang pagkakaiba, nananatili itong hanapin ang pangalawa at pangatlong termino:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

handa na! Nalutas ang problema.

Sagot: (-34; -35; -36)

Pansinin ang isang kakaibang pag-aari ng progression na aming natuklasan: kung kukunin namin ang $n$th at $m$th na mga termino at ibawas ang mga ito sa isa't isa, makukuha namin ang pagkakaiba ng progression na na-multiply sa bilang na $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \kaliwa(n-m \kanan)\]

Simple pero napaka kapaki-pakinabang na ari-arian, na tiyak na kailangan mong malaman - sa tulong nito maaari mong makabuluhang mapabilis ang solusyon ng maraming problema sa mga pag-unlad. Narito ang isang pangunahing halimbawa nito:

Gawain bilang 3. Ang ikalimang termino ng pag-unlad ng arithmetic ay 8.4, at ang ikasampung termino nito ay 14.4. Hanapin ang ikalabinlimang termino ng pag-unlad na ito.

Solusyon. Dahil $((a)_(5))=8.4$, $((a)_(10))=14.4$, at kailangan naming hanapin ang $((a)_(15))$, tandaan namin ang sumusunod:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ at ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Ngunit ayon sa kondisyon $((a)_(10))-((a)_(5))=14.4-8.4=6$, kaya $5d=6$, kung saan mayroon tayong:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Sagot: 20.4

Iyon lang! Hindi namin kailangan na bumuo ng anumang mga sistema ng mga equation at kalkulahin ang unang termino at ang pagkakaiba - ang lahat ay napagpasyahan sa loob lamang ng ilang linya.

Ngayon isaalang-alang natin ang isa pang uri ng problema - ang paghahanap para sa mga negatibo at positibong miyembro ng pag-unlad. Hindi lihim na kung ang pag-unlad ay tumaas, habang ang unang termino nito ay negatibo, sa kalaunan ay lilitaw ang mga positibong termino dito. At kabaligtaran: ang mga tuntunin ng isang bumababa na pag-unlad ay malaon o huli ay magiging negatibo.

Kasabay nito, malayo sa laging posible na mahanap ang sandaling ito "sa noo", sunud-sunod na pag-uuri sa mga elemento. Kadalasan, ang mga problema ay idinisenyo sa paraang nang hindi nalalaman ang mga formula, ang mga kalkulasyon ay kukuha ng ilang mga sheet - matutulog lang kami hanggang sa mahanap namin ang sagot. Samakatuwid, susubukan naming lutasin ang mga problemang ito sa mas mabilis na paraan.

Gawain bilang 4. Ilang negatibong termino sa isang pag-unlad ng arithmetic -38.5; -35.8; …?

Solusyon. Kaya, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, kung saan agad naming makikita ang pagkakaiba:

Tandaan na ang pagkakaiba ay positibo, kaya ang pag-unlad ay tumataas. Ang unang termino ay negatibo, kaya't sa isang punto ay madadapa tayo sa mga positibong numero. Ang tanging tanong ay kung kailan ito mangyayari.

Subukan nating alamin: gaano katagal (i.e., hanggang sa kung anong natural na bilang na $n$) ang negatibiti ng mga termino ay napanatili:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \kanan. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

Ang huling linya ay nangangailangan ng paglilinaw. Kaya alam natin na ang $n \lt 15\frac(7)(27)$. Sa kabilang banda, ang mga integer value lang ng numero ang babagay sa amin (bukod dito: $n\in \mathbb(N)$), kaya ang pinakamalaking pinahihintulutang numero ay tiyak na $n=15$, at sa anumang kaso 16.

Gawain bilang 5. Sa arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Hanapin ang bilang ng unang positibong termino ng pag-unlad na ito.

Ito ay magiging eksaktong parehong problema tulad ng nauna, ngunit hindi namin alam ang $((a)_(1))$. Ngunit ang mga kalapit na termino ay kilala: $((a)_(5))$ at $((a)_(6))$, kaya madali nating mahanap ang pagkakaiba ng pag-unlad:

Bilang karagdagan, subukan nating ipahayag ang ikalimang termino sa mga tuntunin ng una at ang pagkakaiba gamit ang karaniwang formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ at ((a)_(1))=-150-12=-162. \\ \end(align)\]

Ngayon nagpapatuloy kami sa pamamagitan ng pagkakatulad sa nakaraang problema. Nalaman namin kung saang punto sa aming sequence ang mga positibong numero ay lilitaw:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

Ang pinakamababang integer na solusyon ng hindi pagkakapantay-pantay na ito ay ang bilang na 56.

Pakitandaan na sa huling gawain ang lahat ay nabawasan sa mahigpit na hindi pagkakapantay-pantay, kaya ang opsyon na $n=55$ ay hindi angkop sa amin.

Ngayon na natutunan natin kung paano lutasin ang mga simpleng problema, lumipat tayo sa mas kumplikado. Ngunit una, alamin natin ang isa pang napaka-kapaki-pakinabang na katangian ng mga pag-unlad ng aritmetika, na magliligtas sa atin ng maraming oras at hindi pantay na mga cell sa hinaharap. :)

Arithmetic mean at equal indents

Isaalang-alang ang ilang magkakasunod na termino ng tumataas na pag-unlad ng arithmetic $\left(((a)_(n)) \right)$. Subukan nating markahan ang mga ito sa isang linya ng numero:

Arithmetic progression miyembro sa number line

Partikular kong binanggit ang mga di-makatwirang miyembro $((a)_(n-3)),...,((a)_(n+3))$, at hindi anumang $((a)_(1)) , \ ((a)_(2)),\ ((a)_(3))$ atbp. Dahil ang panuntunan, na sasabihin ko ngayon sa iyo, ay gumagana nang pareho para sa anumang "mga segment".

At ang panuntunan ay napaka-simple. Tandaan natin ang recursive formula at isulat ito para sa lahat ng minarkahang miyembro:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Gayunpaman, ang mga pagkakapantay-pantay na ito ay maaaring muling isulat sa ibang paraan:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, ano? Ngunit ang katotohanan na ang mga terminong $((a)_(n-1))$ at $((a)_(n+1))$ ay nasa parehong distansya mula sa $((a)_(n)) $ . At ang distansyang ito ay katumbas ng $d$. Ganoon din ang masasabi tungkol sa mga terminong $((a)_(n-2))$ at $((a)_(n+2))$ - inalis din ang mga ito sa $((a)_(n) )$ sa parehong distansya na katumbas ng $2d$. Maaari kang magpatuloy nang walang hanggan, ngunit ang larawan ay naglalarawan ng kahulugan


Ang mga miyembro ng progreso ay nakahiga sa parehong distansya mula sa gitna

Ano ang ibig sabihin nito para sa atin? Nangangahulugan ito na mahahanap mo ang $((a)_(n))$ kung kilala ang mga kalapit na numero:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Nahinuha namin ang isang kahanga-hangang pahayag: ang bawat miyembro ng isang pag-unlad ng aritmetika ay katumbas ng mean ng aritmetika ng mga kalapit na miyembro! Bukod dito, maaari tayong lumihis mula sa ating $((a)_(n))$ sa kaliwa at pakanan hindi sa pamamagitan ng isang hakbang, ngunit sa pamamagitan ng $k$ na mga hakbang — at magiging tama pa rin ang formula:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Yung. madali tayong makakahanap ng ilang $((a)_(150))$ kung alam natin ang $((a)_(100))$ at $((a)_(200))$, dahil $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Sa unang sulyap, maaaring mukhang ang katotohanang ito ay hindi nagbibigay sa amin ng anumang kapaki-pakinabang. Gayunpaman, sa pagsasagawa, maraming mga gawain ang espesyal na "pinatalas" para sa paggamit ng arithmetic mean. Tingnan mo:

Gawain bilang 6. Hanapin ang lahat ng value ng $x$ na ang mga numerong $-6((x)^(2))$, $x+1$ at $14+4((x)^(2))$ ay magkakasunod na miyembro ng isang pag-unlad ng aritmetika (sa tinukoy na pagkakasunud-sunod).

Solusyon. Dahil ang ipinahiwatig na mga numero ay mga miyembro ng progression, natutugunan nila ang arithmetic mean condition: ang gitnang elemento na $x+1$ ay maaaring ipahayag sa mga tuntunin ng mga kalapit na elemento:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ at ((x)^(2))+x-6=0. \\ \end(align)\]

Ang resulta ay isang klasikong quadratic equation. Ang mga ugat nito: $x=2$ at $x=-3$ ang mga sagot.

Sagot: -3; 2.

Gawain bilang 7. Hanapin ang mga halaga ng $$ upang ang mga numerong $-1;4-3;(()^(2))+1$ ay bumubuo ng isang arithmetic progression (sa ganoong pagkakasunud-sunod).

Solusyon. Ipahayag natin muli gitnang miyembro sa pamamagitan ng arithmetic mean ng mga kalapit na miyembro:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\kanan.; \\ & 8x-6=((x)^(2))+x; \\ at ((x)^(2))-7x+6=0. \\ \end(align)\]

Isa pang quadratic equation. At muli dalawang ugat: $x=6$ at $x=1$.

Sagot: 1; 6.

Kung sa proseso ng paglutas ng isang problema nakakakuha ka ng ilang mga brutal na numero, o hindi ka lubos na sigurado sa tama ng mga sagot na natagpuan, kung gayon mayroong isang kahanga-hangang trick na nagbibigay-daan sa iyo upang suriin: nalutas ba namin nang tama ang problema?

Sabihin nating sa problema 6 ay nakakuha tayo ng mga sagot -3 at 2. Paano natin masusuri kung tama ang mga sagot na ito? Isaksak lang natin ang mga ito sa orihinal na kundisyon at tingnan kung ano ang mangyayari. Hayaan mong ipaalala ko sa iyo na mayroon tayong tatlong numero ($-6(()^(2))$, $+1$ at $14+4(()^(2))$), na dapat bumuo ng isang arithmetic progression. Palitan ang $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Nakuha namin ang mga numero -54; −2; Ang 50 na naiiba ng 52 ay walang alinlangan na isang pag-unlad ng aritmetika. Ang parehong bagay ay nangyayari para sa $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Muli isang pag-unlad, ngunit may pagkakaiba na 27. Kaya, ang problema ay nalutas nang tama. Ang mga nais ay maaaring suriin ang pangalawang gawain sa kanilang sarili, ngunit sasabihin ko kaagad: lahat ay tama din doon.

Sa pangkalahatan, habang nilulutas ang mga huling gawain, natitisod kami sa isa pa kawili-wiling katotohanan, na kailangan ding tandaan:

Kung ang tatlong numero ay tulad na ang pangalawa ay ang average ng una at huli, ang mga numerong ito ay bumubuo ng isang pag-unlad ng aritmetika.

Sa hinaharap, ang pag-unawa sa pahayag na ito ay magbibigay-daan sa amin na literal na "buuin" ang mga kinakailangang pag-unlad batay sa kondisyon ng problema. Ngunit bago tayo makisali sa ganitong "konstruksyon", dapat nating bigyang pansin ang isa pang katotohanan, na direktang sumusunod sa kung ano ang napag-isipan na.

Pagpapangkat at kabuuan ng mga elemento

Balik tayo ulit sa number line. Napansin namin doon ang ilang miyembro ng pag-unlad, kung saan, marahil. nagkakahalaga ng maraming iba pang mga miyembro:

6 na elemento na minarkahan sa linya ng numero

Subukan nating ipahayag ang "kaliwang buntot" sa mga tuntunin ng $((a)_(n))$ at $d$, at ang "kanang buntot" sa mga tuntunin ng $((a)_(k))$ at $ d$. Ito ay napaka-simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Ngayon tandaan na ang mga sumusunod na kabuuan ay pantay-pantay:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Sa madaling salita, kung isasaalang-alang natin bilang simula ang dalawang elemento ng pag-unlad, na sa kabuuan ay katumbas ng ilang bilang na $S$, at pagkatapos ay magsisimula tayong humakbang mula sa mga elementong ito sa magkasalungat na direksyon (patungo sa isa't isa o kabaligtaran upang lumayo), pagkatapos magkakapantay din ang kabuuan ng mga elementong ating madadapa$S$. Ito ay maaaring pinakamahusay na kinakatawan sa graphic na paraan:


Ang parehong mga indent ay nagbibigay ng pantay na kabuuan

Pag-unawa itong katotohanan ay magbibigay-daan sa amin upang malutas ang mga problema sa panimula nang higit pa mataas na lebel pagiging kumplikado kaysa sa mga tinalakay sa itaas. Halimbawa, ang mga ito:

Gawain bilang 8. Tukuyin ang pagkakaiba ng isang pag-unlad ng aritmetika kung saan ang unang termino ay 66, at ang produkto ng ikalawa at ikalabindalawang termino ay ang pinakamaliit na posible.

Solusyon. Isulat natin ang lahat ng ating nalalaman:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Kaya, hindi natin alam ang pagkakaiba ng progression $d$. Sa totoo lang, ang buong solusyon ay bubuuin sa paligid ng pagkakaiba, dahil ang produkto na $((a)_(2))\cdot ((a)_(12))$ ay maaaring isulat muli tulad ng sumusunod:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Para sa mga nasa tangke: Inalis ko ang karaniwang kadahilanan 11 sa pangalawang bracket. Kaya, ang nais na produkto ay isang parisukat na function na may paggalang sa variable na $d$. Samakatuwid, isaalang-alang ang function na $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - ang graph nito ay magiging isang parabola na may mga sanga sa itaas, dahil kung bubuksan natin ang mga bracket, makakakuha tayo ng:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Tulad ng nakikita mo, ang koepisyent na may pinakamataas na termino ay 11 - ito ay isang positibong numero, kaya talagang nakikipag-usap tayo sa isang parabola na may mga sanga sa itaas:


iskedyul quadratic function- parabola

Pakitandaan: kinukuha ng parabola na ito ang pinakamababang halaga nito sa vertex nito na may abscissa $((d)_(0))$. Siyempre, maaari nating kalkulahin ang abscissa na ito gamit karaniwang pamamaraan(mayroong formula $((d)_(0))=(-b)/(2a)\;$), ngunit mas makatwirang tandaan na ang nais na vertex ay nasa axis ng symmetry ng parabola, kaya ang puntong $((d) _(0))$ ay katumbas ng layo mula sa mga ugat ng equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

Iyon ang dahilan kung bakit hindi ako nagmamadaling buksan ang mga bracket: sa orihinal na anyo, ang mga ugat ay napakadaling mahanap. Samakatuwid, ang abscissa ay katumbas ng ibig sabihin mga numero ng aritmetika-66 at -6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Ano ang nagbibigay sa amin ng natuklasang numero? Sa pamamagitan nito, ang kinakailangang produkto ay tumatagal ng pinakamaliit na halaga (nga pala, hindi namin nakalkula ang $((y)_(\min ))$ - hindi ito kinakailangan sa amin). Kasabay nito, ang bilang na ito ay ang pagkakaiba ng paunang pag-unlad, i.e. nakita namin ang sagot. :)

Sagot: -36

Gawain bilang 9. Magsingit ng tatlong numero sa pagitan ng mga numerong $-\frac(1)(2)$ at $-\frac(1)(6)$ upang kasama ng mga ibinigay na numero ay bumuo sila ng arithmetic progression.

Solusyon. Sa katunayan, kailangan nating gumawa ng pagkakasunod-sunod ng limang numero, na alam na ang una at huling numero. Tukuyin ang mga nawawalang numero ng mga variable na $x$, $y$ at $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Tandaan na ang numerong $y$ ay ang "gitna" ng aming sequence - ito ay katumbas ng distansya mula sa mga numerong $x$ at $z$, at mula sa mga numerong $-\frac(1)(2)$ at $-\frac (1)( 6)$. At kung mula sa mga numerong $x$ at $z$ tayo ay nasa sa sandaling ito hindi namin makuha ang $y$, kung gayon ang sitwasyon ay naiiba sa mga dulo ng pag-unlad. Tandaan ang ibig sabihin ng aritmetika:

Ngayon, alam ang $y$, makikita natin ang natitirang mga numero. Tandaan na ang $x$ ay nasa pagitan ng $-\frac(1)(2)$ at $y=-\frac(1)(3)$ na kakahanap lang. kaya lang

Sa parehong pagtatalo, nakita namin ang natitirang numero:

handa na! Natagpuan namin ang lahat ng tatlong numero. Isulat natin ang mga ito sa sagot sa pagkakasunud-sunod kung saan dapat silang ipasok sa pagitan ng mga orihinal na numero.

Sagot: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Gawain bilang 10. Sa pagitan ng mga numero 2 at 42, magpasok ng ilang mga numero na, kasama ng mga ibinigay na numero, ay bumubuo ng isang pag-unlad ng aritmetika, kung alam na ang kabuuan ng una, pangalawa, at huli ng mga ipinasok na numero ay 56.

Solusyon. Higit pa mahirap na pagsubok, na, gayunpaman, ay nalutas sa parehong paraan tulad ng mga nauna - sa pamamagitan ng arithmetic mean. Ang problema ay hindi namin alam kung gaano karaming mga numero ang ilalagay. Samakatuwid, para sa katiyakan, ipinapalagay namin na pagkatapos ng pagpasok ay magkakaroon ng eksaktong $n$ na mga numero, at ang una sa mga ito ay 2, at ang huli ay 42. Sa kasong ito, ang nais na pag-unlad ng aritmetika ay maaaring katawanin bilang:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \kanan\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Tandaan, gayunpaman, na ang mga numerong $((a)_(2))$ at $((a)_(n-1))$ ay nakuha mula sa mga numero 2 at 42 na nakatayo sa mga gilid sa pamamagitan ng isang hakbang patungo sa isa't isa , ibig sabihin. sa gitna ng pagkakasunod-sunod. At ito ay nangangahulugan na

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ngunit ang expression sa itaas ay maaaring muling isulat tulad nito:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Alam ang $((a)_(3))$ at $((a)_(1))$, madali nating mahahanap ang pagkakaiba sa pag-unlad:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\kaliwa(3-1 \kanan)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

Ito ay nananatiling lamang upang mahanap ang natitirang mga miyembro:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Kaya, nasa ika-9 na hakbang na tayo ay darating sa kaliwang dulo ng pagkakasunud-sunod - ang numero 42. Sa kabuuan, 7 numero lamang ang kailangang ipasok: 7; 12; 17; 22; 27; 32; 37.

Sagot: 7; 12; 17; 22; 27; 32; 37

I-text ang mga gawain na may mga pag-unlad

Sa konklusyon, nais kong isaalang-alang ang ilang medyo simpleng mga problema. Well, bilang simple: para sa karamihan ng mga mag-aaral na nag-aaral ng matematika sa paaralan at hindi pa nababasa kung ano ang nakasulat sa itaas, ang mga gawaing ito ay maaaring mukhang isang kilos. Gayunpaman, ito ay tiyak na mga gawain na makikita sa OGE at ang PAGGAMIT sa matematika, kaya inirerekumenda ko na pamilyar ka sa kanila.

Gawain bilang 11. Ang koponan ay gumawa ng 62 na bahagi noong Enero, at sa bawat kasunod na buwan ay gumawa sila ng 14 pang bahagi kaysa sa nauna. Ilang bahagi ang ginawa ng brigada noong Nobyembre?

Solusyon. Malinaw, ang bilang ng mga bahagi, na pininturahan ng buwan, ay magiging isang pagtaas ng pag-unlad ng aritmetika. At:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Ang Nobyembre ay ang ika-11 buwan ng taon, kaya kailangan nating hanapin ang $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Samakatuwid, 202 bahagi ang gagawin sa Nobyembre.

Gawain bilang 12. Ang bookbinding workshop ay nagbubuklod ng 216 na aklat noong Enero, at bawat buwan ay nagbubuklod ito ng 4 pang aklat kaysa sa nakaraang buwan. Ilang mga libro ang bind ng workshop noong Disyembre?

Solusyon. Lahat pare-pareho:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Ang Disyembre ay ang huling, ika-12 buwan ng taon, kaya hinahanap namin ang $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Ito ang sagot - 260 na libro ang ibubulid sa Disyembre.

Buweno, kung nabasa mo na ito, nagmamadali akong batiin ka: matagumpay mong natapos ang "young fighter course" sa mga pag-unlad ng aritmetika. Maaari tayong ligtas na magpatuloy sa susunod na aralin, kung saan pag-aaralan natin ang formula ng progression sum, pati na rin ang mahalaga at lubhang kapaki-pakinabang na mga kahihinatnan mula rito.

Online na calculator.
Solusyon sa pag-unlad ng aritmetika.
Ibinigay: a n , d, n
Hanapin: a 1

Hinahanap ng math program na ito ang \(a_1\) ng isang arithmetic progression batay sa mga numerong tinukoy ng user \(a_n, d \) at \(n \).
Ang mga numerong \(a_n\) at \(d \) ay maaaring tukuyin hindi lamang bilang mga integer, kundi pati na rin bilang mga fraction. Bukod dito, ang isang fractional na numero ay maaaring ipasok sa anyo ng isang decimal fraction (\ (2.5 \)) at sa anyo karaniwang fraction(\(-5\frac(2)(7) \)).

Ang programa ay hindi lamang nagbibigay ng sagot sa problema, ngunit ipinapakita din ang proseso ng paghahanap ng solusyon.

Ang online na calculator na ito ay maaaring maging kapaki-pakinabang para sa mga mag-aaral sa high school bilang paghahanda para sa kontrol sa trabaho at mga pagsusulit, kapag sinusubukan ang kaalaman bago ang pagsusulit, ang mga magulang upang kontrolin ang solusyon ng maraming problema sa matematika at algebra. O baka masyadong mahal para sa iyo na kumuha ng tutor o bumili ng mga bagong aklat-aralin? O gusto mo lang bang matapos ito sa lalong madaling panahon? takdang aralin math o algebra? Sa kasong ito, maaari mo ring gamitin ang aming mga programa na may detalyadong solusyon.

Kaya, maaari mong isagawa ang iyong sariling pagsasanay at/o pagsasanay ng kanilang mga nakababatang kapatid na lalaki o babae, habang ang antas ng edukasyon sa larangan ng mga gawaing dapat lutasin ay tumataas.

Kung hindi ka pamilyar sa mga patakaran para sa pagpasok ng mga numero, inirerekomenda namin na maging pamilyar ka sa mga ito.

Mga panuntunan para sa pagpasok ng mga numero

Ang mga numerong \(a_n\) at \(d \) ay maaaring tukuyin hindi lamang bilang mga integer, kundi pati na rin bilang mga fraction.
Ang numerong \(n\) ay maaari lamang maging isang positibong integer.

Mga panuntunan para sa pagpasok ng mga decimal fraction.
Ang integer at fractional na mga bahagi sa mga decimal fraction ay maaaring paghiwalayin ng alinman sa isang tuldok o kuwit.
Halimbawa, maaari kang pumasok mga decimal kaya 2.5 o kaya 2.5

Mga panuntunan para sa pagpasok ng mga ordinaryong fraction.
Isang buong numero lamang ang maaaring kumilos bilang numerator, denominator at integer na bahagi ng isang fraction.

Ang denominator ay hindi maaaring negatibo.

Pagpasok mo numeric fraction Ang numerator ay pinaghihiwalay mula sa denominator sa pamamagitan ng isang tanda ng dibisyon: /
Input:
Resulta: \(-\frac(2)(3) \)

Ang integer na bahagi ay pinaghihiwalay mula sa fraction ng isang ampersand: &
Input:
Resulta: \(-1\frac(2)(3) \)

Maglagay ng mga numero a n , d, n


Maghanap ng 1

Napag-alaman na ang ilang mga script na kailangan upang malutas ang gawaing ito ay hindi na-load, at ang programa ay maaaring hindi gumana.
Maaaring pinagana mo ang AdBlock.
Sa kasong ito, huwag paganahin ito at i-refresh ang pahina.

Na-disable mo ang JavaScript sa iyong browser.
Dapat na pinagana ang JavaScript para lumitaw ang solusyon.
Narito ang mga tagubilin kung paano paganahin ang JavaScript sa iyong browser.

kasi Maraming tao ang gustong malutas ang problema, ang iyong kahilingan ay nakapila.
Pagkatapos ng ilang segundo, lilitaw ang solusyon sa ibaba.
Maghintay, mangyaring sec...


kung ikaw napansin ang isang error sa solusyon, pagkatapos ay maaari mong isulat ang tungkol dito sa Form ng Feedback.
Huwag kalimutan ipahiwatig kung aling gawain magpasya ka kung ano pumasok sa mga patlang.



Ang aming mga laro, puzzle, emulator:

Medyo teorya.

Numeric na pagkakasunud-sunod

Sa pang-araw-araw na pagsasanay, ang pagnunumero ng iba't ibang mga bagay ay kadalasang ginagamit upang ipahiwatig ang pagkakasunud-sunod kung saan sila matatagpuan. Halimbawa, ang mga bahay sa bawat kalye ay binibilang. Sa library, ang mga subscription ng mambabasa ay binibilang at pagkatapos ay isinaayos sa pagkakasunud-sunod ng mga nakatalagang numero sa mga espesyal na file cabinet.

Sa isang savings bank, sa bilang ng personal na account ng depositor, madali mong mahahanap ang account na ito at makita kung anong uri ng deposito ang mayroon ito. Hayaang magkaroon ng deposito ng a1 rubles sa account No. 1, isang deposito ng a2 rubles sa account No. 2, atbp. Ito ay lumiliko numerical sequence
a 1 , a 2 , a 3 , ..., isang N
kung saan ang N ay ang bilang ng lahat ng mga account. Dito, ang bawat natural na numero n mula 1 hanggang N ay itinalaga ng isang numero a n .

Nag-aaral din ang matematika infinite number sequences:
a 1 , a 2 , a 3 , ..., a n , ... .
Ang numerong a 1 ay tinatawag ang unang miyembro ng sequence, numero a 2 - ang pangalawang miyembro ng sequence, numero a 3 - ang ikatlong miyembro ng sequence atbp.
Ang numero a n ay tinatawag nth (nth) miyembro ng sequence, at ang natural na bilang n ay nito numero.

Halimbawa, sa isang pagkakasunod-sunod ng mga parisukat natural na mga numero 1, 4, 9, 16, 25, ..., n 2 , (n + 1) 2 , ... at 1 = 1 ang unang miyembro ng sequence; at n = n 2 ay ika-1 miyembro mga pagkakasunud-sunod; a n+1 = (n + 1) 2 ay ang (n + 1)th (en plus ang unang) miyembro ng sequence. Kadalasan ang isang sequence ay maaaring tukuyin sa pamamagitan ng formula ng ika-na miyembro nito. Halimbawa, ang formula na \(a_n=\frac(1)(n), \; n \in \mathbb(N) \) ay nagbibigay ng sequence \(1, \; \frac(1)(2) , \; \frac( 1)(3) , \; \frac(1)(4) , \dots,\frac(1)(n) , \dots \)

Arithmetic progression

Ang haba ng isang taon ay humigit-kumulang 365 araw. Ang isang mas tumpak na halaga ay \(365\frac(1)(4) \) araw, kaya bawat apat na taon ay may naipon na error sa isang araw.

Upang isaalang-alang ang error na ito, ang isang araw ay idinagdag sa bawat ikaapat na taon, at ang pinahabang taon ay tinatawag na isang taon ng paglukso.

Halimbawa, sa ikatlong milenyo leap years ang mga taon ay 2004, 2008, 2012, 2016, ... .

Sa pagkakasunud-sunod na ito, ang bawat miyembro, simula sa pangalawa, ay katumbas ng nauna, idinagdag na may parehong numero 4. Ang mga naturang pagkakasunud-sunod ay tinatawag mga pag-unlad ng aritmetika.

Kahulugan.
Ang numerical sequence a 1 , a 2 , a 3 , ..., a n , ... ay tinatawag na pag-unlad ng aritmetika, kung para sa lahat ng natural n ang pagkakapantay-pantay
\(a_(n+1) = a_n+d, \)
kung saan ang d ay ilang numero.

Ito ay sumusunod mula sa formula na ito na ang isang n+1 - a n = d. Ang bilang d ay tinatawag na pagkakaiba pag-unlad ng aritmetika.

Sa pamamagitan ng kahulugan ng isang pag-unlad ng aritmetika, mayroon tayong:
\(a_(n+1)=a_n+d, \quad a_(n-1)=a_n-d, \)
saan
\(a_n= \frac(a_(n-1) +a_(n+1))(2) \), kung saan \(n>1 \)

Kaya, ang bawat miyembro ng arithmetic progression, simula sa pangalawa, ay katumbas ng arithmetic mean ng dalawang miyembro na katabi nito. Ipinapaliwanag nito ang pangalang "aritmetika" na pag-unlad.

Tandaan na kung ang isang 1 at d ay ibinigay, kung gayon ang natitirang mga termino ng pag-unlad ng arithmetic ay maaaring kalkulahin gamit ang recursive formula na a n+1 = a n + d. Sa ganitong paraan, hindi mahirap kalkulahin ang mga unang termino ng pag-unlad, gayunpaman, halimbawa, para sa isang 100, maraming mga kalkulasyon ang kakailanganin. Karaniwan, ang nth term formula ay ginagamit para dito. Ayon sa kahulugan ng isang pag-unlad ng aritmetika
\(a_2=a_1+d, \)
\(a_3=a_2+d=a_1+2d, \)
\(a_4=a_3+d=a_1+3d\)
atbp.
Sa pangkalahatan,
\(a_n=a_1+(n-1)d, \)
dahil ang ika-na miyembro ng isang pag-unlad ng arithmetic ay nakuha mula sa unang miyembro sa pamamagitan ng pagdaragdag ng (n-1) beses sa bilang d.
Ang formula na ito ay tinatawag na formula ng ika-n miyembro ng isang pag-unlad ng arithmetic.

Ang kabuuan ng unang n termino ng isang pag-unlad ng arithmetic

Hanapin natin ang kabuuan ng lahat ng natural na numero mula 1 hanggang 100.
Isinulat namin ang kabuuan na ito sa dalawang paraan:
S = l + 2 + 3 + ... + 99 + 100,
S = 100 + 99 + 98 + ... + 2 + 1.
Idinaragdag namin ang mga pagkakapantay-pantay na ito ayon sa termino:
2S = 101 + 101 + 101 + ... + 101 + 101.
Mayroong 100 termino sa kabuuan na ito.
Samakatuwid, 2S = 101 * 100, kung saan S = 101 * 50 = 5050.

Isaalang-alang ngayon ang isang di-makatwirang pag-unlad ng aritmetika
a 1 , a 2 , a 3 , ..., a n , ...
Hayaang S n ang kabuuan ng unang n termino ng pag-unlad na ito:
S n \u003d a 1, a 2, a 3, ..., a n
Pagkatapos ang kabuuan ng unang n termino ng isang pag-unlad ng arithmetic ay
\(S_n = n \cdot \frac(a_1+a_n)(2) \)

Dahil \(a_n=a_1+(n-1)d \), pagkatapos ay palitan ang a n sa formula na ito, makakakuha tayo ng isa pang formula para sa paghahanap ang mga kabuuan ng unang n termino ng isang pag-unlad ng arithmetic:
\(S_n = n \cdot \frac(2a_1+(n-1)d)(2) \)

Mga Aklat (mga aklat-aralin) Mga Abstract ng Unified State Examination at mga pagsusulit sa OGE online Mga laro, puzzle Pagbuo ng mga graph ng mga function Spelling Dictionary ng Russian Language Dictionary of youth slang Direktoryo ng mga paaralang Ruso Catalog ng mga sekondaryang paaralan sa Russia Katalogo ng mga unibersidad sa Russia Listahan ng mga gawain

Kapag nag-aaral ng algebra sa isang sekondaryang paaralan (grade 9) isa sa mahahalagang paksa ay ang pag-aaral pagkakasunud-sunod ng mga numero, na kinabibilangan ng mga progression - geometric at arithmetic. Sa artikulong ito, isasaalang-alang natin ang isang pag-unlad ng aritmetika at mga halimbawa na may mga solusyon.

Ano ang isang pag-unlad ng aritmetika?

Upang maunawaan ito, kinakailangang magbigay ng kahulugan ng pag-unlad na isinasaalang-alang, gayundin ang pagbibigay ng mga pangunahing pormula na higit pang gagamitin sa paglutas ng mga problema.

Arithmetic o isang set ng mga nakaayos na rational na numero, na ang bawat miyembro ay naiiba mula sa nauna sa pamamagitan ng ilang pare-parehong halaga. Ang halagang ito ay tinatawag na pagkakaiba. Iyon ay, alam mo ang sinumang miyembro ng isang nakaayos na serye ng mga numero at ang pagkakaiba, maaari mong ibalik ang buong pag-unlad ng aritmetika.

Kumuha tayo ng isang halimbawa. Ang susunod na pagkakasunud-sunod ng mga numero ay isang pag-unlad ng aritmetika: 4, 8, 12, 16, ..., dahil ang pagkakaiba sa kasong ito ay 4 (8 - 4 = 12 - 8 = 16 - 12). Ngunit ang hanay ng mga numero 3, 5, 8, 12, 17 ay hindi na maiuugnay sa itinuturing na uri ng pag-unlad, dahil ang pagkakaiba para dito ay hindi isang pare-parehong halaga (5 - 3 ≠ 8 - 5 ≠ 12 - 8 ≠ 17 - 12).

Mga mahahalagang formula

Ibinibigay na namin ngayon ang mga pangunahing formula na kakailanganin upang malutas ang mga problema gamit ang isang pag-unlad ng arithmetic. Hayaan ang isang n tukuyin ang ika-na miyembro ng sequence, kung saan ang n ay isang integer. Ang pagkakaiba ay tinutukoy ng letrang Latin na d. Kung gayon ang mga sumusunod na expression ay totoo:

  1. Upang matukoy ang halaga ng nth term, ang formula ay angkop: a n \u003d (n-1) * d + a 1.
  2. Upang matukoy ang kabuuan ng unang n termino: S n = (a n + a 1)*n/2.

Upang maunawaan ang anumang mga halimbawa ng isang pag-unlad ng aritmetika na may solusyon sa ika-9 na baitang, sapat na tandaan ang dalawang formula na ito, dahil ang anumang mga problema ng uri na isinasaalang-alang ay binuo sa kanilang paggamit. Gayundin, huwag kalimutan na ang pagkakaiba sa pag-unlad ay tinutukoy ng formula: d = a n - a n-1 .

Halimbawa #1: Paghahanap ng Hindi Kilalang Miyembro

Nagbibigay kami ng isang simpleng halimbawa ng isang pag-unlad ng aritmetika at ang mga formula na dapat gamitin upang malutas.

Hayaang ibigay ang pagkakasunod-sunod na 10, 8, 6, 4, ..., kailangan na makahanap ng limang termino dito.

Ito ay sumusunod na mula sa mga kondisyon ng problema na ang unang 4 na termino ay kilala. Ang ikalima ay maaaring tukuyin sa dalawang paraan:

  1. Kalkulahin muna natin ang pagkakaiba. Mayroon kaming: d = 8 - 10 = -2. Katulad nito, ang isa ay maaaring tumagal ng anumang dalawang iba pang termino na nakatayo sa tabi ng isa't isa. Halimbawa, d = 4 - 6 = -2. Dahil alam na d \u003d a n - a n-1, pagkatapos ay d \u003d a 5 - a 4, mula sa kung saan kami makakakuha ng: a 5 \u003d a 4 + d. Pinapalitan namin ang mga kilalang halaga: a 5 = 4 + (-2) = 2.
  2. Ang pangalawang paraan ay nangangailangan din ng kaalaman sa pagkakaiba ng pag-unlad na pinag-uusapan, kaya kailangan mo munang matukoy ito, tulad ng ipinapakita sa itaas (d = -2). Alam na ang unang termino a 1 = 10, ginagamit namin ang formula para sa n bilang ng sequence. Mayroon kaming: a n \u003d (n - 1) * d + a 1 \u003d (n - 1) * (-2) + 10 \u003d 12 - 2 * n. Ang pagpapalit ng n = 5 sa huling expression, makukuha natin ang: a 5 = 12-2 * 5 = 2.

Tulad ng nakikita mo, ang parehong mga solusyon ay humahantong sa parehong resulta. Tandaan na sa halimbawang ito ang pagkakaiba d ng pag-unlad ay negatibo. Ang ganitong mga pagkakasunud-sunod ay tinatawag na pagbaba dahil ang bawat sunud-sunod na termino ay mas mababa kaysa sa nauna.

Halimbawa #2: pagkakaiba sa pag-unlad

Ngayon pasimplehin natin ang gawain nang kaunti, magbigay ng isang halimbawa kung paano hanapin ang pagkakaiba ng isang pag-unlad ng aritmetika.

Ito ay kilala na sa ilang algebraic progression ang 1st term ay katumbas ng 6, at ang 7th term ay katumbas ng 18. Ito ay kinakailangan upang mahanap ang pagkakaiba at ibalik ang sequence na ito sa 7th term.

Gamitin natin ang formula upang matukoy ang hindi kilalang termino: a n = (n - 1) * d + a 1 . Pinapalitan namin ang kilalang data mula sa kundisyon dito, iyon ay, ang mga numero a 1 at 7, mayroon kami: 18 \u003d 6 + 6 * d. Mula sa expression na ito, madali mong makalkula ang pagkakaiba: d = (18 - 6) / 6 = 2. Kaya, ang unang bahagi ng problema ay nasagot.

Upang maibalik ang isang pagkakasunud-sunod hanggang sa 7 termino, dapat gamitin ng isa ang kahulugan algebraic progression, ibig sabihin, a 2 = a 1 + d, a 3 = a 2 + d at iba pa. Bilang resulta, ibinabalik namin ang buong sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 at 7 = 18.

Halimbawa #3: paggawa ng progreso

Pahirapan natin mas malakas na kondisyon mga gawain. Ngayon ay kailangan mong sagutin ang tanong kung paano makahanap ng isang pag-unlad ng aritmetika. Maaari nating ibigay ang sumusunod na halimbawa: dalawang numero ang ibinigay, halimbawa, 4 at 5. Kinakailangang gumawa ng algebraic progression upang ang tatlo pang termino ay magkasya sa pagitan ng mga ito.

Bago simulan ang paglutas ng problemang ito, kinakailangan upang maunawaan kung anong lugar ang sasakupin ng mga ibinigay na numero sa pag-unlad sa hinaharap. Dahil magkakaroon ng tatlong higit pang mga termino sa pagitan nila, pagkatapos ay isang 1 \u003d -4 at isang 5 \u003d 5. Kapag naitatag ito, nagpapatuloy kami sa isang gawain na katulad ng nauna. Muli, para sa nth term, ginagamit namin ang formula, nakukuha namin: isang 5 \u003d isang 1 + 4 * d. Mula sa: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25. Dito, ang pagkakaiba ay hindi isang integer na halaga, ngunit ito ay isang rational na numero, kaya ang mga formula para sa algebraic progression ay nananatiling pareho.

Ngayon, idagdag natin ang nakitang pagkakaiba sa isang 1 at ibalik ang mga nawawalang miyembro ng progression. Nakukuha namin ang: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, isang 5 \u003d 2.75 + 2.25 \u,0,0 na kasabay ng kalagayan ng problema.

Halimbawa #4: Ang unang miyembro ng progression

Patuloy kaming nagbibigay ng mga halimbawa ng pag-unlad ng aritmetika na may solusyon. Sa lahat ng nakaraang problema, ang unang bilang ng algebraic progression ay kilala. Ngayon isaalang-alang ang isang problema ng ibang uri: hayaan ang dalawang numero na ibigay, kung saan ang isang 15 = 50 at isang 43 = 37. Ito ay kinakailangan upang mahanap mula sa kung anong numero ang sequence na ito ay nagsisimula.

Ang mga formula na ginamit hanggang ngayon ay may kaalaman sa isang 1 at d. Walang nalalaman tungkol sa mga numerong ito sa kondisyon ng problema. Gayunpaman, isulat natin ang mga expression para sa bawat termino kung saan mayroon tayong impormasyon: a 15 = a 1 + 14 * d at a 43 = a 1 + 42 * d. Nakakuha kami ng dalawang equation kung saan mayroong 2 hindi kilalang dami (a 1 at d). Nangangahulugan ito na ang problema ay nabawasan sa paglutas ng isang sistema ng mga linear equation.

Ang tinukoy na sistema ay pinakamadaling lutasin kung nagpapahayag ka ng 1 sa bawat equation, at pagkatapos ay ihambing ang mga resultang expression. Unang equation: a 1 = a 15 - 14 * d = 50 - 14 * d; pangalawang equation: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Ang equating mga expression na ito, makakakuha tayo ng: 50 - 14 * d \u003d 37 - 42 * d, kung saan ang pagkakaiba d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (3 decimal na lugar lamang ang ibinigay).

Alam ang d, maaari mong gamitin ang alinman sa 2 expression sa itaas para sa isang 1 . Halimbawa, una: isang 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0.464) \u003d 56.496.

Kung may mga pagdududa tungkol sa resulta, maaari mong suriin ito, halimbawa, matukoy ang ika-43 na miyembro ng pag-unlad, na tinukoy sa kondisyon. Nakukuha namin ang: isang 43 \u003d isang 1 + 42 * d \u003d 56.496 + 42 * (- 0.464) \u003d 37.008. Ang isang maliit na error ay dahil sa ang katunayan na ang rounding sa thousandths ay ginamit sa mga kalkulasyon.

Halimbawa #5: Sum

Ngayon tingnan natin ang ilang mga halimbawa na may mga solusyon para sa kabuuan ng isang pag-unlad ng arithmetic.

Hayaang magbigay ng numerical progression ng sumusunod na form: 1, 2, 3, 4, ...,. Paano makalkula ang kabuuan ng 100 ng mga numerong ito?

Salamat sa pag-unlad ng teknolohiya ng computer, maaaring malutas ang problemang ito, iyon ay, sunud-sunod na pagdaragdag ng lahat ng mga numero, na gagawin ng computer sa sandaling pinindot ng isang tao ang Enter key. Gayunpaman, ang problema ay maaaring malutas sa pag-iisip kung bibigyan mo ng pansin na ang ipinakita na serye ng mga numero ay isang algebraic progression, at ang pagkakaiba nito ay 1. Ang paglalapat ng formula para sa kabuuan, makakakuha tayo ng: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Nakakagulat na tandaan na ang problemang ito ay tinatawag na "Gaussian", dahil sa simula ng ika-18 siglo ang sikat na Aleman, na nasa edad na 10 taong gulang pa lamang, ay nagawang lutasin ito sa kanyang isip sa loob ng ilang segundo. Hindi alam ng batang lalaki ang formula para sa kabuuan ng isang algebraic progression, ngunit napansin niya na kung magdadagdag ka ng mga pares ng mga numero na matatagpuan sa mga gilid ng sequence, palagi kang makakakuha ng parehong resulta, iyon ay, 1 + 100 = 2 + 99 = 3 + 98 = ..., at dahil ang mga kabuuan na ito ay magiging eksaktong 50 (100 / 2), kung gayon upang makuha ang tamang sagot, sapat na upang i-multiply ang 50 sa 101.

Halimbawa #6: kabuuan ng mga termino mula n hanggang m

Ang isa pang tipikal na halimbawa ng kabuuan ng isang pag-unlad ng aritmetika ay ang mga sumusunod: binigyan ng serye ng mga numero: 3, 7, 11, 15, ..., kailangan mong hanapin kung ano ang magiging kabuuan ng mga termino nito mula 8 hanggang 14.

Ang problema ay nalutas sa dalawang paraan. Ang una sa mga ito ay nagsasangkot ng paghahanap ng mga hindi kilalang termino mula 8 hanggang 14, at pagkatapos ay pagbubuod ng mga ito nang sunud-sunod. Dahil kakaunti ang mga termino, ang pamamaraang ito ay hindi sapat na matrabaho. Gayunpaman, iminungkahi na lutasin ang problemang ito sa pamamagitan ng pangalawang paraan, na mas pangkalahatan.

Ang ideya ay upang makakuha ng isang formula para sa kabuuan ng isang algebraic progression sa pagitan ng mga terminong m at n, kung saan ang n > m ay mga integer. Para sa parehong mga kaso, sumulat kami ng dalawang expression para sa kabuuan:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Dahil n > m, halatang kasama sa 2 sum ang una. Ang huling konklusyon ay nangangahulugan na kung kukunin natin ang pagkakaiba sa pagitan ng mga kabuuan na ito, at idagdag ang terminong a m dito (sa kaso ng pagkuha ng pagkakaiba, ito ay ibabawas mula sa kabuuan S n), pagkatapos ay makukuha natin ang kinakailangang sagot sa problema. Mayroon kaming: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Kinakailangang palitan ang mga formula para sa a n at a m sa expression na ito. Pagkatapos ay makukuha natin ang: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Ang resultang formula ay medyo mahirap, gayunpaman, ang kabuuan ng S mn ay nakasalalay lamang sa n, m, a 1 at d. Sa aming kaso, a 1 = 3, d = 4, n = 14, m = 8. Ang pagpapalit sa mga numerong ito, makakakuha tayo ng: S mn = 301.

Tulad ng makikita mula sa mga solusyon sa itaas, ang lahat ng mga problema ay batay sa kaalaman ng expression para sa ika-n na termino at ang formula para sa kabuuan ng hanay ng mga unang termino. Bago mo simulan ang paglutas ng alinman sa mga problemang ito, inirerekumenda na maingat mong basahin ang kondisyon, malinaw na maunawaan kung ano ang gusto mong hanapin, at pagkatapos lamang magpatuloy sa solusyon.

Ang isa pang tip ay upang magsikap para sa pagiging simple, iyon ay, kung masasagot mo ang tanong nang hindi gumagamit ng kumplikadong mga kalkulasyon sa matematika, kailangan mong gawin iyon, dahil sa kasong ito ang posibilidad na magkamali ay mas mababa. Halimbawa, sa halimbawa ng pag-unlad ng arithmetic na may solusyon No. 6, maaaring huminto ang isa sa formula S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, at hatiin ang pangkalahatang gawain sa magkakahiwalay na mga subtask (sa kasong ito, hanapin muna ang mga terminong a n at a m).

Kung may mga pagdududa tungkol sa resulta na nakuha, inirerekumenda na suriin ito, tulad ng ginawa sa ilan sa mga halimbawang ibinigay. Paano makahanap ng pag-unlad ng aritmetika, nalaman. Kapag naisip mo na, hindi na ito mahirap.

Uri ng aralin: pag-aaral ng bagong materyal.

Layunin ng Aralin:

  • pagpapalawak at pagpapalalim ng mga ideya ng mga mag-aaral tungkol sa mga gawaing nalutas gamit ang pag-unlad ng arithmetic; organisasyon ng aktibidad sa paghahanap ng mga mag-aaral kapag kumukuha ng pormula para sa kabuuan ng unang n miyembro ng isang pag-unlad ng aritmetika;
  • pag-unlad ng mga kasanayan upang malayang makakuha ng bagong kaalaman, gumamit ng nakuha na kaalaman upang makamit ang gawain;
  • pag-unlad ng pagnanais at pangangailangan na gawing pangkalahatan ang mga katotohanang nakuha, ang pag-unlad ng kalayaan.

Mga gawain:

  • gawing pangkalahatan at gawing sistematiko ang umiiral na kaalaman sa paksang "Arithmetic progression";
  • kumuha ng mga formula para sa pagkalkula ng kabuuan ng unang n miyembro ng isang pag-unlad ng arithmetic;
  • ituro kung paano ilapat ang mga nakuhang formula sa paglutas iba't ibang gawain;
  • maakit ang atensyon ng mga mag-aaral sa pamamaraan para sa paghahanap ng halaga ng isang numerical expression.

Kagamitan:

  • card na may mga gawain para sa trabaho sa mga grupo at pares;
  • papel ng pagsusuri;
  • pagtatanghal"Aritmetikong pag-unlad".

I. Aktwalisasyon ng pangunahing kaalaman.

1. Pansariling gawain dalawahan.

1st option:

Tukuyin ang isang pag-unlad ng aritmetika. Sumulat ng isang recursive formula na tumutukoy sa isang pag-unlad ng arithmetic. Magbigay ng halimbawa ng pag-unlad ng aritmetika at ipahiwatig ang pagkakaiba nito.

2nd option:

Isulat ang formula para sa ika-n na termino ng isang pag-unlad ng arithmetic. Hanapin ang ika-100 termino ng isang pag-unlad ng arithmetic ( isang n}: 2, 5, 8 …
Sa oras na ito, dalawang estudyante reverse side ang mga board ay naghahanda ng mga sagot sa parehong mga tanong.
Sinusuri ng mga mag-aaral ang gawain ng kapareha sa pamamagitan ng paghahambing nito sa pisara. (Ang mga leaflet na may mga sagot ay ibibigay).

2. sandali ng laro.

Ehersisyo 1.

Guro. Naglihi ako ng ilang pag-unlad ng aritmetika. Magtanong sa akin ng dalawang tanong lamang upang pagkatapos ng mga sagot ay mabilis mong pangalanan ang ika-7 miyembro ng pag-unlad na ito. (1, 3, 5, 7, 9, 11, 13, 15…)

Mga tanong mula sa mga mag-aaral.

  1. Ano ang ikaanim na termino ng pag-unlad at ano ang pagkakaiba?
  2. Ano ang ikawalong termino ng pag-unlad at ano ang pagkakaiba?

Kung wala nang mga katanungan, maaari silang pasiglahin ng guro - isang "pagbabawal" sa d (pagkakaiba), iyon ay, hindi pinapayagan na magtanong kung ano ang pagkakaiba. Maaari kang magtanong: ano ang ika-6 na termino ng pag-unlad at ano ang ika-8 termino ng pag-unlad?

Gawain 2.

Mayroong 20 numero na nakasulat sa pisara: 1, 4, 7 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58.

Nakatalikod ang guro sa pisara. Sinasabi ng mga estudyante ang numero ng numero, at agad na tinawag ng guro ang numero mismo. Ipaliwanag kung paano ko ito magagawa?

Naaalala ng guro ang pormula ng ika-n na termino isang n \u003d 3n - 2 at, pinapalitan ang ibinigay na mga halaga ng n, hinahanap ang kaukulang mga halaga a n .

II. Pahayag ng gawaing pang-edukasyon.

Iminumungkahi kong lutasin ang isang lumang problema noong ika-2 milenyo BC, na matatagpuan sa Egyptian papyri.

Isang gawain:“Sabihin sa inyo: hatiin ang 10 takal ng barley sa pagitan ng 10 tao, ang pagkakaiba ng bawat tao at ng kanyang kapwa ay 1/8 ng sukat.”

  • Paano nauugnay ang problemang ito sa paksa ng pag-unlad ng aritmetika? (Ang bawat susunod na tao ay makakakuha ng 1/8 ng sukat ng higit pa, kaya ang pagkakaiba ay d=1/8, 10 tao, kaya n=10.)
  • Ano sa palagay mo ang ibig sabihin ng numero 10? (Ang kabuuan ng lahat ng miyembro ng progression.)
  • Ano pa ang kailangan mong malaman para maging madali at simple ang paghahati ng barley ayon sa kondisyon ng problema? (Ang unang termino ng pag-unlad.)

Layunin ng aralin- pagkuha ng dependence ng kabuuan ng mga tuntunin ng pag-unlad sa kanilang numero, ang unang termino at ang pagkakaiba, at pagsuri kung ang problema ay nalutas nang tama sa sinaunang panahon.

Bago makuha ang formula, tingnan natin kung paano nalutas ng mga sinaunang Egyptian ang problema.

At nalutas nila ito tulad nito:

1) 10 sukat: 10 = 1 sukat - average na bahagi;
2) 1 sukat ∙ = 2 sukat - nadoble karaniwan ibahagi.
nadoble karaniwan ang bahagi ay ang kabuuan ng mga bahagi ng ika-5 at ika-6 na tao.
3) 2 sukat - 1/8 sukat = 1 7/8 sukat - dalawang beses ang bahagi ng ikalimang tao.
4) 1 7/8: 2 = 5/16 - ang bahagi ng ikalima; at iba pa, mahahanap mo ang bahagi ng bawat nauna at kasunod na tao.

Nakukuha namin ang pagkakasunud-sunod:

III. Ang solusyon sa gawain.

1. Magpangkat-pangkat

1st group: Hanapin ang kabuuan ng 20 magkakasunod na natural na numero: S 20 \u003d (20 + 1) ∙ 10 \u003d 210.

Sa pangkalahatan

II pangkat: Hanapin ang kabuuan ng mga natural na numero mula 1 hanggang 100 (Alamat ng Little Gauss).

S 100 \u003d (1 + 100) ∙ 50 \u003d 5050

Konklusyon:

III pangkat: Hanapin ang kabuuan ng mga natural na numero mula 1 hanggang 21.

Solusyon: 1+21=2+20=3+19=4+18…

Konklusyon:

IV pangkat: Hanapin ang kabuuan ng mga natural na numero mula 1 hanggang 101.

Konklusyon:

Ang pamamaraang ito ng paglutas ng mga itinuturing na problema ay tinatawag na "Gauss method".

2. Ang bawat pangkat ay naglalahad ng solusyon sa suliranin sa pisara.

3. Paglalahat ng mga iminungkahing solusyon para sa isang di-makatwirang pag-unlad ng arithmetic:

a 1 , a 2 , a 3 ,…, a n-2 , a n-1 , a n .
S n \u003d a 1 + a 2 + a 3 + a 4 + ... + a n-3 + a n-2 + a n-1 + a n.

Nahanap namin ang kabuuan na ito sa pamamagitan ng pagtatalo nang katulad:

4. Nalutas na ba natin ang gawain?(Oo.)

IV. Pangunahing pag-unawa at paggamit ng mga nakuhang formula sa paglutas ng mga problema.

1. Sinusuri ang solusyon ng isang lumang problema sa pamamagitan ng formula.

2. Paglalapat ng pormula sa paglutas ng iba't ibang suliranin.

3. Mga pagsasanay para sa pagbuo ng kakayahang magamit ang formula sa paglutas ng mga problema.

A) Blg. 613

binigay :( at n) - pag-unlad ng aritmetika;

(a n): 1, 2, 3, ..., 1500

Hanapin: S 1500

Solusyon: , at 1 = 1, at 1500 = 1500,

B) Ibinigay: ( at n) - pag-unlad ng aritmetika;
(at n): 1, 2, 3, ...
S n = 210

Hanapin: n
Solusyon:

V. Malayang gawain na may mutual na pagpapatunay.

Nagtrabaho si Denis bilang isang courier. Sa unang buwan, ang kanyang suweldo ay 200 rubles, sa bawat kasunod na buwan ay tumaas ito ng 30 rubles. Magkano ang kinita niya sa isang taon?

binigay :( at n) - pag-unlad ng aritmetika;
a 1 = 200, d=30, n=12
Hanapin: S 12
Solusyon:

Sagot: Nakatanggap si Denis ng 4380 rubles para sa taon.

VI. Pagtuturo sa takdang-aralin.

  1. p. 4.3 - alamin ang derivation ng formula.
  2. №№ 585, 623 .
  3. Bumuo ng isang problema na malulutas gamit ang pormula para sa kabuuan ng unang n termino ng isang pag-unlad ng aritmetika.

VII. Pagbubuod ng aralin.

1. Iskor sheet

2. Ipagpatuloy ang mga pangungusap

  • Ngayon sa klase natutunan ko...
  • Mga Natutunang Formula...
  • Sa tingin ko …

3. Mahahanap mo ba ang kabuuan ng mga numero mula 1 hanggang 500? Anong paraan ang iyong gagamitin upang malutas ang problemang ito?

Bibliograpiya.

1. Algebra, ika-9 na baitang. Tutorial para sa institusyong pang-edukasyon. Ed. G.V. Dorofeeva. Moscow: Enlightenment, 2009.